Cargando…

Optimizing Router Placement of Indoor Wireless Sensor Networks in Smart Buildings for IoT Applications

Internet of Things (IoT) is characterized by a system of interconnected devices capable of communicating with each other to carry out specific useful tasks. The connection between these devices is ensured by routers distributed in a network. Optimizing the placement of these routers in a distributed...

Descripción completa

Detalles Bibliográficos
Autores principales: Alanezi, Mohammed A., Bouchekara, Houssem R. E. H., Javaid, Muhammad S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663200/
https://www.ncbi.nlm.nih.gov/pubmed/33143362
http://dx.doi.org/10.3390/s20216212
Descripción
Sumario:Internet of Things (IoT) is characterized by a system of interconnected devices capable of communicating with each other to carry out specific useful tasks. The connection between these devices is ensured by routers distributed in a network. Optimizing the placement of these routers in a distributed wireless sensor network (WSN) in a smart building is a tedious task. Computer-Aided Design (CAD) programs and software can simplify this task since they provide a robust and efficient tool. At the same time, experienced engineers from different backgrounds must play a prominent role in the abovementioned task. Therefore, specialized companies rely on both; a useful CAD tool along with the experience and the flair of a sound expert/engineer to optimally place routers in a WSN. This paper aims to develop a new approach based on the interaction between an efficient CAD tool and an experienced engineer for the optimal placement of routers in smart buildings for IoT applications. The approach follows a step-by-step procedure to weave an optimal network infrastructure, having both automatic and designer-intervention modes. Several case studies have been investigated, and the obtained results show that the developed approach produces a synthesized network with full coverage and a reduced number of routers.