Cargando…
Anomaly Detection of Power Plant Equipment Using Long Short-Term Memory Based Autoencoder Neural Network
Anomaly detection is of great significance in condition-based maintenance of power plant equipment. The conventional fixed threshold detection method is not able to perform early detection of equipment abnormalities. In this study, a general anomaly detection framework based on a long short-term mem...
Autores principales: | Hu, Di, Zhang, Chen, Yang, Tao, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663224/ https://www.ncbi.nlm.nih.gov/pubmed/33138122 http://dx.doi.org/10.3390/s20216164 |
Ejemplares similares
-
Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network
por: Park, Pangun, et al.
Publicado: (2019) -
Detecting Anomalies of Satellite Power Subsystem via Stage-Training Denoising Autoencoders
por: Jin, Weihua, et al.
Publicado: (2019) -
MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection
Publicado: (2020) -
Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
por: Liang, Lu, et al.
Publicado: (2023) -
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
por: Zhang, Sen, et al.
Publicado: (2019)