Cargando…
Natural Fibre as Reinforcement for Vintage Wood
In recent years, we have seen the construction of numerous good-looking buildings, each of which is perfectly safe, resistant to weather conditions, durable and economically efficient. Apart from their use in the structures of new buildings, natural fibres are even more important in the field of res...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663247/ https://www.ncbi.nlm.nih.gov/pubmed/33121203 http://dx.doi.org/10.3390/ma13214799 |
Sumario: | In recent years, we have seen the construction of numerous good-looking buildings, each of which is perfectly safe, resistant to weather conditions, durable and economically efficient. Apart from their use in the structures of new buildings, natural fibres are even more important in the field of restoring historical heritage. The article presents experimental testing of old wooden beams made of the European larch Larix decidua Mill. with natural defects (knots, natural grain, deviations, cracks and voids) on a technical scale, reinforced with natural fibre. The tests were carried out to examine the response of heterogeneous wooden beams during bending with reinforced basalt fibres (BFRP). The wooden beams were cut out from the ceiling of an old building from 1860. The tests of reinforced wooden beams were intended to determine the increase in bearing capacity and rigidity after providing natural reinforcement. The tests allowed for determining the deflection, the distribution of deformations and images of failure for non-reinforced and reinforced beams. The performed tests have shown the effectiveness of the application of basalt fibres (BFRP) to the improvement of structural properties of existing beams, thus allowing an increase in flexural strength. It can be concluded that reinforcements using BFRP materials can be applied both to strengthening the existing structures with deteriorated mechanical properties, as well as to reduce the dimensions of a structure. Experimental tests have proven that, in the case of beams reinforced with natural basalt (BFRP), their rigidity increases by ca. 15.17% compared to the reference beams. |
---|