Cargando…

Automatic Extraction of Power Cables Location in Railways Using Surface LiDAR Systems

The assembly and maintenance of electrified railway systems is of vital importance for its correct operation. Contact wires are critical elements since the correct collection of energy from trains through pantographs depends on them. Periodical inspection of the state of these installations is essen...

Descripción completa

Detalles Bibliográficos
Autores principales: Gutiérrez-Fernández, Alexis, Fernández-Llamas, Camino, Matellán-Olivera, Vicente, Suárez-González, Adrián
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663307/
https://www.ncbi.nlm.nih.gov/pubmed/33142776
http://dx.doi.org/10.3390/s20216222
Descripción
Sumario:The assembly and maintenance of electrified railway systems is of vital importance for its correct operation. Contact wires are critical elements since the correct collection of energy from trains through pantographs depends on them. Periodical inspection of the state of these installations is essential. This task traditionally implies a heavy manual workload subject to errors. A new system that allows one to check the state (height and stagger) of contact and messenger wires is presented on this article blueA new method based on seven steps for identifying the contact wires and measuring their height and stagger from point clouds recorded by means of a LiDAR system is presented. This system can be used both in assembly and maintenance phases, as well as afterwards, allowing the analysis of point clouds previously recorded. The new method was evaluated in both test bench and real environments against the commonly used measurement method. Results with the comparison between this new system and the commonly used measurement method in both test bench and real railway environments are presented. Results of this comparison show differences of less than a centimetre on average and the amount of time spent for the measuring phase is significantly decreased and not prone to human errors.