Cargando…
A Novel Ensemble Adaptive Sparse Bayesian Transfer Learning Machine for Nonlinear Large-Scale Process Monitoring
Process monitoring plays an important role in ensuring the safety and stable operation of equipment in a large-scale process. This paper proposes a novel data-driven process monitoring framework, termed the ensemble adaptive sparse Bayesian transfer learning machine (EAdspB-TLM), for nonlinear fault...
Autores principales: | Cheng, Hongchao, Liu, Yiqi, Huang, Daoping, Xu, Chong, Wu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663339/ https://www.ncbi.nlm.nih.gov/pubmed/33126722 http://dx.doi.org/10.3390/s20216139 |
Ejemplares similares
-
Grand Canonical Ensembles of Sparse Networks and Bayesian Inference
por: Bianconi, Ginestra
Publicado: (2022) -
Nonlinear Dynamic Process Monitoring Based on Ensemble
Kernel Canonical Variate Analysis and Bayesian Inference
por: Wang, Xuemei, et al.
Publicado: (2022) -
Sparse prediction informed by genetic annotations using the logit normal prior for Bayesian regression tree ensembles
por: Spanbauer, Charles, et al.
Publicado: (2022) -
Data-Driven Analysis of Nonlinear Heterogeneous Reactions through Sparse Modeling and Bayesian Statistical Approaches
por: Ito, Masaki, et al.
Publicado: (2021) -
Variable selection in social-environmental data: sparse regression and tree ensemble machine learning approaches
por: Handorf, Elizabeth, et al.
Publicado: (2020)