Cargando…
Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks
The paper presents a novel depth-estimation method for light-field (LF) images based on innovative multi-stereo matching and machine-learning techniques. In the first stage, a novel block-based stereo matching algorithm is employed to compute the initial estimation. The proposed algorithm is specifi...
Autores principales: | Rogge, Ségolène, Schiopu, Ionut, Munteanu, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663356/ https://www.ncbi.nlm.nih.gov/pubmed/33143080 http://dx.doi.org/10.3390/s20216188 |
Ejemplares similares
-
Attention Networks for the Quality Enhancement of Light Field Images
por: Schiopu, Ionut, et al.
Publicado: (2021) -
Depth Estimation from Light Field Geometry Using Convolutional Neural Networks †
por: Han, Lei, et al.
Publicado: (2021) -
Cellular neural networks for the stereo matching problem
por: Taraglio, S, et al.
Publicado: (1997) -
Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
por: Liu, Botao, et al.
Publicado: (2022) -
ModuleNet: A Convolutional Neural Network for Stereo Vision
por: Renteria-Vidales, O. I., et al.
Publicado: (2020)