Cargando…

Epitope-Based Immunoinformatics Approach on Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus-2

With an increasing fatality rate, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has emerged as a promising threat to human health worldwide. Recently, the World Health Organization (WHO) has announced the infectious disease caused by SARS-CoV-2, which is known as coronavirus disease-2...

Descripción completa

Detalles Bibliográficos
Autores principales: Rakib, Ahmed, Sami, Saad Ahmed, Islam, Md. Ashiqul, Ahmed, Shahriar, Faiz, Farhana Binta, Khanam, Bibi Humayra, Marma, Kay Kay Shain, Rahman, Maksuda, Uddin, Mir Muhammad Nasir, Nainu, Firzan, Emran, Talha Bin, Simal-Gandara, Jesus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663370/
https://www.ncbi.nlm.nih.gov/pubmed/33147821
http://dx.doi.org/10.3390/molecules25215088
Descripción
Sumario:With an increasing fatality rate, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has emerged as a promising threat to human health worldwide. Recently, the World Health Organization (WHO) has announced the infectious disease caused by SARS-CoV-2, which is known as coronavirus disease-2019 (COVID-2019), as a global pandemic. Additionally, the positive cases are still following an upward trend worldwide and as a corollary, there is a need for a potential vaccine to impede the progression of the disease. Lately, it has been documented that the nucleocapsid (N) protein of SARS-CoV-2 is responsible for viral replication and interferes with host immune responses. We comparatively analyzed the sequences of N protein of SARS-CoV-2 for the identification of core attributes and analyzed the ancestry through phylogenetic analysis. Subsequently, we predicted the most immunogenic epitope for the T-cell and B-cell. Importantly, our investigation mainly focused on major histocompatibility complex (MHC) class I potential peptides and NTASWFTAL interacted with most human leukocyte antigen (HLA) that are encoded by MHC class I molecules. Further, molecular docking analysis unveiled that NTASWFTAL possessed a greater affinity towards HLA and also available in a greater range of the population. Our study provides a consolidated base for vaccine design and we hope that this computational analysis will pave the way for designing novel vaccine candidates.