Cargando…

Effects of Multipath Attenuation in the Optical Communication-Based Internet of Underwater Things

The propagation of light underwater is tied closely to the optical properties of water. In particular, the underwater channel imposes attenuation on the optical signal in the form of scattering, absorption, and turbulence. These attenuation factors can lead to severe spatial and temporal dispersion,...

Descripción completa

Detalles Bibliográficos
Autores principales: Qadar, Rabia, Bin Qaim, Waleed, Nurmi, Jari, Tan, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663492/
https://www.ncbi.nlm.nih.gov/pubmed/33143235
http://dx.doi.org/10.3390/s20216201
Descripción
Sumario:The propagation of light underwater is tied closely to the optical properties of water. In particular, the underwater channel imposes attenuation on the optical signal in the form of scattering, absorption, and turbulence. These attenuation factors can lead to severe spatial and temporal dispersion, which restricts communication to a limited range and bandwidth. In this paper, we propose a statistical model to estimate the probability density function of the temporal dispersion in underwater wireless optical communication (UWOC) based Internet of Underwater Things (IoUTs) using discrete histograms. The underwater optical channel is modeled using Monte Carlo simulations, and the effects of temporal dispersion are presented by measuring the magnitude response of the channel in terms of received power. The temporal response analysis is followed by an extensive performance evaluation in terms of bit error rate (BER). To facilitate in-depth theoretical analysis, we have measured and presented magnitude response and BER of the channel under different field-of-views (FoVs), apertures, and water types. The three main areas under study are (i) BER versus link distance behavior, (ii) temporal response of the channel, and (iii) effect of scattering on photon travel. Our study shows the two main factors that contribute to beam spreading and temporal dispersion are (i) diffusivity of the optical source and (ii) multiple scattering. Furthermore, our results suggest that temporal dispersion caused due to multiple scattering cannot be mitigated completely; however, it can be minimized by optimizing the receiver aperture.