Cargando…

DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices

We describe a simulation-based Design Space Exploration procedure (DynDSE) for wearable IoT edge devices that retrieve events from streaming sensor data using context-adaptive pattern recognition algorithms. We provide a formal characterisation of the design space, given a set of system functionalit...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiboni, Giovanni, Suarez, Juan Carlos, Zhang, Rui, Amft, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663500/
https://www.ncbi.nlm.nih.gov/pubmed/33121017
http://dx.doi.org/10.3390/s20216104
_version_ 1783609641085698048
author Schiboni, Giovanni
Suarez, Juan Carlos
Zhang, Rui
Amft, Oliver
author_facet Schiboni, Giovanni
Suarez, Juan Carlos
Zhang, Rui
Amft, Oliver
author_sort Schiboni, Giovanni
collection PubMed
description We describe a simulation-based Design Space Exploration procedure (DynDSE) for wearable IoT edge devices that retrieve events from streaming sensor data using context-adaptive pattern recognition algorithms. We provide a formal characterisation of the design space, given a set of system functionalities, components and their parameters. An iterative search evaluates configurations according to a set of requirements in simulations with actual sensor data. The inherent trade-offs embedded in conflicting metrics are explored to find an optimal configuration given the application-specific conditions. Our metrics include retrieval performance, execution time, energy consumption, memory demand, and communication latency. We report a case study for the design of electromyographic-monitoring eyeglasses with applications in automatic dietary monitoring. The design space included two spotting algorithms, and two sampling algorithms, intended for real-time execution on three microcontrollers. DynDSE yielded configurations that balance retrieval performance and resource consumption with an F1 score above 80% at an energy consumption that was 70% below the default, non-optimised configuration. We expect that the DynDSE approach can be applied to find suitable wearable IoT system designs in a variety of sensor-based applications.
format Online
Article
Text
id pubmed-7663500
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76635002020-11-14 DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices Schiboni, Giovanni Suarez, Juan Carlos Zhang, Rui Amft, Oliver Sensors (Basel) Article We describe a simulation-based Design Space Exploration procedure (DynDSE) for wearable IoT edge devices that retrieve events from streaming sensor data using context-adaptive pattern recognition algorithms. We provide a formal characterisation of the design space, given a set of system functionalities, components and their parameters. An iterative search evaluates configurations according to a set of requirements in simulations with actual sensor data. The inherent trade-offs embedded in conflicting metrics are explored to find an optimal configuration given the application-specific conditions. Our metrics include retrieval performance, execution time, energy consumption, memory demand, and communication latency. We report a case study for the design of electromyographic-monitoring eyeglasses with applications in automatic dietary monitoring. The design space included two spotting algorithms, and two sampling algorithms, intended for real-time execution on three microcontrollers. DynDSE yielded configurations that balance retrieval performance and resource consumption with an F1 score above 80% at an energy consumption that was 70% below the default, non-optimised configuration. We expect that the DynDSE approach can be applied to find suitable wearable IoT system designs in a variety of sensor-based applications. MDPI 2020-10-27 /pmc/articles/PMC7663500/ /pubmed/33121017 http://dx.doi.org/10.3390/s20216104 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schiboni, Giovanni
Suarez, Juan Carlos
Zhang, Rui
Amft, Oliver
DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title_full DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title_fullStr DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title_full_unstemmed DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title_short DynDSE: Automated Multi-Objective Design Space Exploration for Context-Adaptive Wearable IoT Edge Devices
title_sort dyndse: automated multi-objective design space exploration for context-adaptive wearable iot edge devices
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663500/
https://www.ncbi.nlm.nih.gov/pubmed/33121017
http://dx.doi.org/10.3390/s20216104
work_keys_str_mv AT schibonigiovanni dyndseautomatedmultiobjectivedesignspaceexplorationforcontextadaptivewearableiotedgedevices
AT suarezjuancarlos dyndseautomatedmultiobjectivedesignspaceexplorationforcontextadaptivewearableiotedgedevices
AT zhangrui dyndseautomatedmultiobjectivedesignspaceexplorationforcontextadaptivewearableiotedgedevices
AT amftoliver dyndseautomatedmultiobjectivedesignspaceexplorationforcontextadaptivewearableiotedgedevices