Cargando…
Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components
The recent development of high-throughput technology has allowed us to accumulate vast amounts of multi-omics data. Because even single omics data have a large number of variables, integrated analysis of multi-omics data suffers from problems such as computational instability and variable redundancy...
Autores principales: | Park, Mira, Kim, Doyoen, Moon, Kwanyoung, Park, Taesung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663540/ https://www.ncbi.nlm.nih.gov/pubmed/33147797 http://dx.doi.org/10.3390/ijms21218202 |
Ejemplares similares
-
Association tests based on the principal-component analysis
por: Oh, Sohee, et al.
Publicado: (2007) -
Efficient Blockwise Permutation Tests Preserving
Exchangeability
por: Zhou, Chunxiao, et al.
Publicado: (2014) -
Blockwise PPG Enhancement Based on Time-Variant Zero-Phase Harmonic Notch Filtering
por: Park, Chanki, et al.
Publicado: (2017) -
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016) -
Super-sparse principal component analyses for high-throughput genomic data
por: Lee, Donghwan, et al.
Publicado: (2010)