Cargando…
Experimental Evaluation of Machine Learning Methods for Robust Received Signal Strength-Based Visible Light Positioning
In this work, the use of Machine Learning methods for robust Received Signal Strength (RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative RSS input features. The...
Autores principales: | Raes, Willem, Knudde, Nicolas, De Bruycker, Jorik, Dhaene, Tom, Stevens, Nobby |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663557/ https://www.ncbi.nlm.nih.gov/pubmed/33121055 http://dx.doi.org/10.3390/s20216109 |
Ejemplares similares
-
Polarization Differential Visible Light Communication: Theory and Experimental Evaluation †
por: De Bruycker, Jorik, et al.
Publicado: (2020) -
Automating the Calibration of Visible Light Positioning Systems
por: Amsters, Robin, et al.
Publicado: (2022) -
Calibration of Visible Light Positioning Systems with a Mobile Robot
por: Amsters, Robin, et al.
Publicado: (2021) -
In-Depth Analysis of Unmodulated Visible Light Positioning Using the Iterated Extended Kalman Filter
por: Amsters, Robin, et al.
Publicado: (2019) -
Autonomous Fingerprinting and Large Experimental Data Set for Visible Light Positioning
por: Glass, Tyrel, et al.
Publicado: (2021)