Cargando…
Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks
There have been abundant experimental studies exploring ultra-high-performance concrete (UHPC) in recent years. However, the relationships between the engineering properties of UHPC and its mixture composition are highly nonlinear and difficult to delineate using traditional statistical methods. The...
Autores principales: | Marani, Afshin, Jamali, Armin, Nehdi, Moncef L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663629/ https://www.ncbi.nlm.nih.gov/pubmed/33114394 http://dx.doi.org/10.3390/ma13214757 |
Ejemplares similares
-
Mixture Optimization of Recycled Aggregate Concrete Using Hybrid Machine Learning Model
por: Nunez, Itzel, et al.
Publicado: (2020) -
Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization
por: Akbarzadeh, Mohammad Reza, et al.
Publicado: (2023) -
Effect of Polymers on Behavior of Ultra-High-Strength Concrete
por: Mayhoub, Ola A., et al.
Publicado: (2022) -
Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm
por: Shah, Hammad Ahmed, et al.
Publicado: (2022) -
Mechanical Behavior of Ultrahigh-Performance Concrete Tunnel Lining Segments
por: Abbas, Safeer, et al.
Publicado: (2021)