Cargando…
Life Cycle Sustainability Performance Assessment Method for Comparison of Civil Engineering Works Design Concepts: Case Study of a Bridge
Standardized and transparent life cycle sustainability performance assessment methods are essential for improving the sustainability of civil engineering works. The purpose of this paper is to demonstrate the potential of using a life cycle sustainability assessment method in a road bridge case stud...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663784/ https://www.ncbi.nlm.nih.gov/pubmed/33126613 http://dx.doi.org/10.3390/ijerph17217909 |
Sumario: | Standardized and transparent life cycle sustainability performance assessment methods are essential for improving the sustainability of civil engineering works. The purpose of this paper is to demonstrate the potential of using a life cycle sustainability assessment method in a road bridge case study. The method is in line with requirements of relevant standards, uses life cycle assessment, life cycle costs and incomes, and environmental externalities, and applies normalization and weighting of indicators. The case study involves a short-span bridge in a design-build infrastructure project, which was selected for its generality. Two bridge design concepts are assessed and compared: a concrete slab frame bridge and a soil-steel composite bridge. Data available in the contractor’s tender phase are used. The two primary aims of this study are (1) to analyse the practical application potential of the method in carrying out transparent sustainability assessments of design concepts in the early planning and design stages, and (2) to examine the results obtained in the case study to identify indicators in different life cycle stages and elements of the civil engineering works project with the largest impacts on sustainability. The results show that the method facilitates comparisons of the life cycle sustainability performance of design concepts at the indicator and construction element levels, enabling better-informed and more impartial design decisions to be made. |
---|