Cargando…
Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos
Immediate assessment of structural integrity of important civil infrastructures, like bridges, hospitals, or dams, is of utmost importance after natural disasters. Currently, inspection is performed manually by engineers who look for local damages and their extent on significant locations of the str...
Autores principales: | Bhowmick, Sutanu, Nagarajaiah, Satish, Veeraraghavan, Ashok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663834/ https://www.ncbi.nlm.nih.gov/pubmed/33167411 http://dx.doi.org/10.3390/s20216299 |
Ejemplares similares
-
Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique
por: Kim, Byunghyun, et al.
Publicado: (2018) -
Vision-Based HAR in UAV Videos Using Histograms and Deep Learning Techniques
por: Gundu, Sireesha, et al.
Publicado: (2023) -
Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing
por: Kim, Hyunjun, et al.
Publicado: (2017) -
Deep Learning-Based Subsurface Damage Localization Using Full-Field Surface Strains
por: Pal, Ashish, et al.
Publicado: (2023) -
Crack detection for concrete bridges with imaged based deep learning
por: Wan, Chunfeng, et al.
Publicado: (2022)