Cargando…

Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing

In this work we study the influence of dielectric surface and process parameters on the geometry and electrical properties of silver electrodes obtained by electrohydrodynamic inkjet printing. The cross-section and thickness of printed silver tracks are optimized to achieve a high conductivity. Silv...

Descripción completa

Detalles Bibliográficos
Autores principales: Sleczkowski, Piotr, Borkowski, Michal, Zajaczkowska, Hanna, Ulanski, Jacek, Pisula, Wojciech, Marszalek, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663849/
https://www.ncbi.nlm.nih.gov/pubmed/33167331
http://dx.doi.org/10.3390/ma13214974
_version_ 1783609722387038208
author Sleczkowski, Piotr
Borkowski, Michal
Zajaczkowska, Hanna
Ulanski, Jacek
Pisula, Wojciech
Marszalek, Tomasz
author_facet Sleczkowski, Piotr
Borkowski, Michal
Zajaczkowska, Hanna
Ulanski, Jacek
Pisula, Wojciech
Marszalek, Tomasz
author_sort Sleczkowski, Piotr
collection PubMed
description In this work we study the influence of dielectric surface and process parameters on the geometry and electrical properties of silver electrodes obtained by electrohydrodynamic inkjet printing. The cross-section and thickness of printed silver tracks are optimized to achieve a high conductivity. Silver overprints with cross-section larger than 4 μm(2) and thickness larger than 90 nm exhibit the lowest resistivity. To fabricate electrodes in the desired geometry, a sufficient volume of ink is distributed on the surface by applying appropriate voltage amplitude. Single and multilayer overprints are incorporated as bottom contacts in bottom gate organic field-effect transistors (OFETs) with a semiconducting polymer as active layer. The multilayer electrodes result in significantly higher electrical parameters than single layer contacts, confirming the importance of a careful design of the printed tracks for reliable device performance. The results provide important design guidelines for precise fabrication of electrodes in electronic devices by electrohydrodynamic inkjet printing.
format Online
Article
Text
id pubmed-7663849
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76638492020-11-14 Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing Sleczkowski, Piotr Borkowski, Michal Zajaczkowska, Hanna Ulanski, Jacek Pisula, Wojciech Marszalek, Tomasz Materials (Basel) Article In this work we study the influence of dielectric surface and process parameters on the geometry and electrical properties of silver electrodes obtained by electrohydrodynamic inkjet printing. The cross-section and thickness of printed silver tracks are optimized to achieve a high conductivity. Silver overprints with cross-section larger than 4 μm(2) and thickness larger than 90 nm exhibit the lowest resistivity. To fabricate electrodes in the desired geometry, a sufficient volume of ink is distributed on the surface by applying appropriate voltage amplitude. Single and multilayer overprints are incorporated as bottom contacts in bottom gate organic field-effect transistors (OFETs) with a semiconducting polymer as active layer. The multilayer electrodes result in significantly higher electrical parameters than single layer contacts, confirming the importance of a careful design of the printed tracks for reliable device performance. The results provide important design guidelines for precise fabrication of electrodes in electronic devices by electrohydrodynamic inkjet printing. MDPI 2020-11-05 /pmc/articles/PMC7663849/ /pubmed/33167331 http://dx.doi.org/10.3390/ma13214974 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sleczkowski, Piotr
Borkowski, Michal
Zajaczkowska, Hanna
Ulanski, Jacek
Pisula, Wojciech
Marszalek, Tomasz
Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title_full Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title_fullStr Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title_full_unstemmed Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title_short Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing
title_sort geometry control of source/drain electrodes in organic field-effect transistors by electrohydrodynamic inkjet printing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663849/
https://www.ncbi.nlm.nih.gov/pubmed/33167331
http://dx.doi.org/10.3390/ma13214974
work_keys_str_mv AT sleczkowskipiotr geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting
AT borkowskimichal geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting
AT zajaczkowskahanna geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting
AT ulanskijacek geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting
AT pisulawojciech geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting
AT marszalektomasz geometrycontrolofsourcedrainelectrodesinorganicfieldeffecttransistorsbyelectrohydrodynamicinkjetprinting