Cargando…
Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks
As part of a novel method for material development, deep rolling was used in this work to characterize the mechanical properties of macroscopic specimens of C45 (AISI 1045), S235 (AISI 1015), and 100Cr6 (AISI 52100) in various heat treatment states. Deep rolling is conventionally used to enhance sur...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663921/ https://www.ncbi.nlm.nih.gov/pubmed/33167537 http://dx.doi.org/10.3390/ma13214987 |
_version_ | 1783609738418716672 |
---|---|
author | Wielki, Nicole Heinz, Noémie Meyer, Daniel |
author_facet | Wielki, Nicole Heinz, Noémie Meyer, Daniel |
author_sort | Wielki, Nicole |
collection | PubMed |
description | As part of a novel method for material development, deep rolling was used in this work to characterize the mechanical properties of macroscopic specimens of C45 (AISI 1045), S235 (AISI 1015), and 100Cr6 (AISI 52100) in various heat treatment states. Deep rolling is conventionally used to enhance surface and subsurface properties by reducing the surface roughness, introducing compressive residual stresses, and strain hardening. In the context of this work, it was utilized to determine material-specific variables via a mechanically applied load. For that purpose, the geometries of individual deep rolled tracks were measured. In dependence of the process parameters such as deep rolling pressure and tool size, the track geometry, i.e., the specific track depth, was for the first time compared for different materials. A functional relationship identified between the specific track depth and the material state dependent hardness forms the basis for a future characterization of the properties of alloy compositions belonging to the Fe–C–Cr system. Since deep rolling is performed in the same clamping as machining operations, hardness alterations could easily be determined at different points in the process chain using an optical in-process measurement of track geometries in the future. |
format | Online Article Text |
id | pubmed-7663921 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76639212020-11-14 Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks Wielki, Nicole Heinz, Noémie Meyer, Daniel Materials (Basel) Article As part of a novel method for material development, deep rolling was used in this work to characterize the mechanical properties of macroscopic specimens of C45 (AISI 1045), S235 (AISI 1015), and 100Cr6 (AISI 52100) in various heat treatment states. Deep rolling is conventionally used to enhance surface and subsurface properties by reducing the surface roughness, introducing compressive residual stresses, and strain hardening. In the context of this work, it was utilized to determine material-specific variables via a mechanically applied load. For that purpose, the geometries of individual deep rolled tracks were measured. In dependence of the process parameters such as deep rolling pressure and tool size, the track geometry, i.e., the specific track depth, was for the first time compared for different materials. A functional relationship identified between the specific track depth and the material state dependent hardness forms the basis for a future characterization of the properties of alloy compositions belonging to the Fe–C–Cr system. Since deep rolling is performed in the same clamping as machining operations, hardness alterations could easily be determined at different points in the process chain using an optical in-process measurement of track geometries in the future. MDPI 2020-11-05 /pmc/articles/PMC7663921/ /pubmed/33167537 http://dx.doi.org/10.3390/ma13214987 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wielki, Nicole Heinz, Noémie Meyer, Daniel Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title | Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title_full | Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title_fullStr | Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title_full_unstemmed | Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title_short | Characterizing the Local Material Properties of Different Fe–C–Cr-Steels by Using Deep Rolled Single Tracks |
title_sort | characterizing the local material properties of different fe–c–cr-steels by using deep rolled single tracks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663921/ https://www.ncbi.nlm.nih.gov/pubmed/33167537 http://dx.doi.org/10.3390/ma13214987 |
work_keys_str_mv | AT wielkinicole characterizingthelocalmaterialpropertiesofdifferentfeccrsteelsbyusingdeeprolledsingletracks AT heinznoemie characterizingthelocalmaterialpropertiesofdifferentfeccrsteelsbyusingdeeprolledsingletracks AT meyerdaniel characterizingthelocalmaterialpropertiesofdifferentfeccrsteelsbyusingdeeprolledsingletracks |