Cargando…
Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System
Human motion analysis using a smartphone-embedded accelerometer sensor provided important context for the identification of static, dynamic, and complex sequence of activities. Research in smartphone-based motion analysis are implemented for tasks, such as health status monitoring, fall detection an...
Autores principales: | Alo, Uzoma Rita, Nweke, Henry Friday, Teh, Ying Wah, Murtaza, Ghulam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663988/ https://www.ncbi.nlm.nih.gov/pubmed/33167424 http://dx.doi.org/10.3390/s20216300 |
Ejemplares similares
-
Non-Pharmaceutical Interventions against COVID-19 Pandemic: Review of Contact Tracing and Social Distancing Technologies, Protocols, Apps, Security and Open Research Directions
por: Alo, Uzoma Rita, et al.
Publicado: (2021) -
Efficacy prediction of noninvasive ventilation failure based on the stacking ensemble algorithm and autoencoder
por: Liang, Na, et al.
Publicado: (2022) -
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
por: Ni, Qin, et al.
Publicado: (2020) -
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
por: Gao, Xile, et al.
Publicado: (2019) -
Stacked Autoencoders for the P300 Component Detection
por: Vařeka, Lukáš, et al.
Publicado: (2017)