Cargando…
Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review
The algorithms of electroencephalography (EEG) decoding are mainly based on machine learning in current research. One of the main assumptions of machine learning is that training and test data belong to the same feature space and are subject to the same probability distribution. However, this may be...
Autores principales: | Zhang, Kai, Xu, Guanghua, Zheng, Xiaowei, Li, Huanzhong, Zhang, Sicong, Yu, Yunhui, Liang, Renghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664219/ https://www.ncbi.nlm.nih.gov/pubmed/33167561 http://dx.doi.org/10.3390/s20216321 |
Ejemplares similares
-
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces
por: Liu, Chang, et al.
Publicado: (2023) -
Anti-fatigue Performance in SSVEP-Based Visual Acuity Assessment: A Comparison of Six Stimulus Paradigms
por: Zheng, Xiaowei, et al.
Publicado: (2020) -
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
por: Khan, M. Jawad, et al.
Publicado: (2014) -
Status of deep learning for EEG-based brain–computer interface applications
por: Hossain, Khondoker Murad, et al.
Publicado: (2023)