Cargando…
Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring
Microwave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteopo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664235/ https://www.ncbi.nlm.nih.gov/pubmed/33167562 http://dx.doi.org/10.3390/s20216320 |
_version_ | 1783609803060281344 |
---|---|
author | Amin, Bilal Shahzad, Atif O’Halloran, Martin Elahi, Muhammad Adnan |
author_facet | Amin, Bilal Shahzad, Atif O’Halloran, Martin Elahi, Muhammad Adnan |
author_sort | Amin, Bilal |
collection | PubMed |
description | Microwave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteoporotic and osteoarthritis human trabecular bones. The bone phantoms were designed as a two-layered circular structure, where the outer layer mimics the dielectric properties of the cortical bone and the inner layer mimics the dielectric properties of the trabecular bone. The electromagnetic (EM) inverse scattering problem was solved using a distorted Born iterative method (DBIM). A compressed sensing-based linear inversion approach referred to as iterative method with adaptive thresholding for compressed sensing (IMATCS) has been employed for solving the underdetermined set of linear equations at each DBIM iteration. To overcome the challenges posed by the ill-posedness of the EM inverse scattering problem, the [Formula: see text]-based regularization approach was adopted in the amalgamation of the IMATCS approach. The simulation results showed that osteoporotic and osteoarthritis bones can be differentiated based on the reconstructed dielectric properties even for low values of the signal-to-noise ratio. These results show that the adopted approach can be used to monitor bone health based on the reconstructed dielectric properties. |
format | Online Article Text |
id | pubmed-7664235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76642352020-11-14 Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring Amin, Bilal Shahzad, Atif O’Halloran, Martin Elahi, Muhammad Adnan Sensors (Basel) Article Microwave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteoporotic and osteoarthritis human trabecular bones. The bone phantoms were designed as a two-layered circular structure, where the outer layer mimics the dielectric properties of the cortical bone and the inner layer mimics the dielectric properties of the trabecular bone. The electromagnetic (EM) inverse scattering problem was solved using a distorted Born iterative method (DBIM). A compressed sensing-based linear inversion approach referred to as iterative method with adaptive thresholding for compressed sensing (IMATCS) has been employed for solving the underdetermined set of linear equations at each DBIM iteration. To overcome the challenges posed by the ill-posedness of the EM inverse scattering problem, the [Formula: see text]-based regularization approach was adopted in the amalgamation of the IMATCS approach. The simulation results showed that osteoporotic and osteoarthritis bones can be differentiated based on the reconstructed dielectric properties even for low values of the signal-to-noise ratio. These results show that the adopted approach can be used to monitor bone health based on the reconstructed dielectric properties. MDPI 2020-11-05 /pmc/articles/PMC7664235/ /pubmed/33167562 http://dx.doi.org/10.3390/s20216320 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amin, Bilal Shahzad, Atif O’Halloran, Martin Elahi, Muhammad Adnan Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title | Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title_full | Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title_fullStr | Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title_full_unstemmed | Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title_short | Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring |
title_sort | microwave bone imaging: a preliminary investigation on numerical bone phantoms for bone health monitoring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664235/ https://www.ncbi.nlm.nih.gov/pubmed/33167562 http://dx.doi.org/10.3390/s20216320 |
work_keys_str_mv | AT aminbilal microwaveboneimagingapreliminaryinvestigationonnumericalbonephantomsforbonehealthmonitoring AT shahzadatif microwaveboneimagingapreliminaryinvestigationonnumericalbonephantomsforbonehealthmonitoring AT ohalloranmartin microwaveboneimagingapreliminaryinvestigationonnumericalbonephantomsforbonehealthmonitoring AT elahimuhammadadnan microwaveboneimagingapreliminaryinvestigationonnumericalbonephantomsforbonehealthmonitoring |