Cargando…
Assessing the Best Gap-Filling Technique for River Stage Data Suitable for Low Capacity Processors and Real-Time Application Using IoT
Hydrometeorological data sets are usually incomplete due to different reasons (malfunctioning sensors, collected data storage problems, etc.). Missing data do not only affect the resulting decision-making process, but also the choice of a particular analysis method. Given the increase of extreme eve...
Autores principales: | Luna, Antonio Madueño, Lineros, Miriam López, Gualda, Javier Estévez, Giráldez Cervera, Juan Vicente, Madueño Luna, José Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664424/ https://www.ncbi.nlm.nih.gov/pubmed/33171771 http://dx.doi.org/10.3390/s20216354 |
Ejemplares similares
-
Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT
por: Luna, José Miguel Madueño, et al.
Publicado: (2020) -
Optimized Design of Neural Networks for a River Water Level Prediction System
por: Lineros, Miriam López, et al.
Publicado: (2021) -
Analysis of the Functionality of the Feed Chain in Olive Pitting, Slicing and Stuffing Machines by IoT, Computer Vision and Neural Network Diagnosis
por: Lucas Pascual, Alberto, et al.
Publicado: (2020) -
Addressing the Security Gap in IoT: Towards an IoT Cyber Range
por: Nock, Oliver, et al.
Publicado: (2020) -
Use of Artificial Vision during the Lye Treatment of Sevillian-Style Green Olives to Determine the Optimal Time for Terminating the Cooking Process
por: Gordillo, Miguel Calixto López, et al.
Publicado: (2023)