Cargando…
A forecast model for prevention of foodborne outbreaks of non-typhoidal salmonellosis
BACKGROUND: This work presents a forecast model for non-typhoidal salmonellosis outbreaks. METHOD: This forecast model is based on fitted values of multivariate regression time series that consider diagnosis and estimation of different parameters, through a very flexible statistical treatment called...
Autores principales: | Rojas, Fernando, Ibacache-Quiroga, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664469/ https://www.ncbi.nlm.nih.gov/pubmed/33240587 http://dx.doi.org/10.7717/peerj.10009 |
Ejemplares similares
-
Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends
por: Karanth, Shraddha, et al.
Publicado: (2023) -
Animal contact as a source of human non-typhoidal salmonellosis
por: Hoelzer, Karin, et al.
Publicado: (2011) -
Trends in the Epidemiology of Non-Typhoidal Salmonellosis in Israel between 2010 and 2021
por: Bassal, Ravit, et al.
Publicado: (2023) -
Global Trends in Typhoidal Salmonellosis: A Systematic Review
por: Als, Daina, et al.
Publicado: (2018) -
Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis
por: Mohammed, Manal, et al.
Publicado: (2020)