Cargando…
Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume
Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664694/ https://www.ncbi.nlm.nih.gov/pubmed/33171812 http://dx.doi.org/10.3390/ijms21218361 |
_version_ | 1783609886307778560 |
---|---|
author | Jin, Jianfeng Jaspers, Richard T. Wu, Gang Korfage, Joannes A.M. Klein-Nulend, Jenneke Bakker, Astrid D. |
author_facet | Jin, Jianfeng Jaspers, Richard T. Wu, Gang Korfage, Joannes A.M. Klein-Nulend, Jenneke Bakker, Astrid D. |
author_sort | Jin, Jianfeng |
collection | PubMed |
description | Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm(3). After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics. |
format | Online Article Text |
id | pubmed-7664694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76646942020-11-14 Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume Jin, Jianfeng Jaspers, Richard T. Wu, Gang Korfage, Joannes A.M. Klein-Nulend, Jenneke Bakker, Astrid D. Int J Mol Sci Article Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm(3). After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics. MDPI 2020-11-07 /pmc/articles/PMC7664694/ /pubmed/33171812 http://dx.doi.org/10.3390/ijms21218361 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jin, Jianfeng Jaspers, Richard T. Wu, Gang Korfage, Joannes A.M. Klein-Nulend, Jenneke Bakker, Astrid D. Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title | Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title_full | Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title_fullStr | Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title_full_unstemmed | Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title_short | Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume |
title_sort | shear stress modulates osteoblast cell and nucleus morphology and volume |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664694/ https://www.ncbi.nlm.nih.gov/pubmed/33171812 http://dx.doi.org/10.3390/ijms21218361 |
work_keys_str_mv | AT jinjianfeng shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume AT jaspersrichardt shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume AT wugang shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume AT korfagejoannesam shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume AT kleinnulendjenneke shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume AT bakkerastridd shearstressmodulatesosteoblastcellandnucleusmorphologyandvolume |