Cargando…

Compact N-Band Tree-Shaped Multiplexer-Based Antenna Structures for 5G/IoT Mobile Devices

This paper presents a simple, compact and low-cost design method that allows one to obtain low-profile multi-band antennas for the overcrowded future generation networks, which are widely versatile and very heterogeneous in the K/Ka bands. The proposed antennas comprise n radiating monopoles, one fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Amélia, Varum, Tiago, Matos, João N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664703/
https://www.ncbi.nlm.nih.gov/pubmed/33171635
http://dx.doi.org/10.3390/s20216366
Descripción
Sumario:This paper presents a simple, compact and low-cost design method that allows one to obtain low-profile multi-band antennas for the overcrowded future generation networks, which are widely versatile and very heterogeneous in the K/Ka bands. The proposed antennas comprise n radiating monopoles, one for each of the desired operating frequencies, along with a frequency selective feeding network fed at a single point. This concept enables a single antenna to be shared with different radio-frequency (RF) frontends, potentially saving space. Typically, with n-band structures the biggest challenge is to make them highly efficient and here this is assured by multiplexing the frequency, and thus isolating each of the monopoles, allowing the design of scalable structures which fit the 5G applications. Based on the vision proposed here, a dual-band and a tri-band structures were built and characterized by their main parameters. Both prototypes achieved peak efficiencies around 80%, with adequate bandwidths and gains, as well as great compactness.