Cargando…

aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics

Dynamic processes are inherently important in disease, and identifying disease-related disruptions of normal dynamic processes can provide information about individual patients. We have previously characterized individuals’ disease states via pathway-based anomalies in expression data, and we have i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pietras, Christopher Michael, Power, Liam, Slonim, Donna K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664835/
https://www.ncbi.nlm.nih.gov/pubmed/31797638
_version_ 1783609901370572800
author Pietras, Christopher Michael
Power, Liam
Slonim, Donna K.
author_facet Pietras, Christopher Michael
Power, Liam
Slonim, Donna K.
author_sort Pietras, Christopher Michael
collection PubMed
description Dynamic processes are inherently important in disease, and identifying disease-related disruptions of normal dynamic processes can provide information about individual patients. We have previously characterized individuals’ disease states via pathway-based anomalies in expression data, and we have identified disease-correlated disruption of predictable dynamic patterns by modeling a virtual time series in static data. Here we combine the two approaches, using an anomaly detection model and virtual time series to identify anomalous temporal processes in specific disease states. We demonstrate that this approach can informatively characterize individual patients, suggesting personalized therapeutic approaches.
format Online
Article
Text
id pubmed-7664835
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-76648352020-11-13 aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics Pietras, Christopher Michael Power, Liam Slonim, Donna K. Pac Symp Biocomput Article Dynamic processes are inherently important in disease, and identifying disease-related disruptions of normal dynamic processes can provide information about individual patients. We have previously characterized individuals’ disease states via pathway-based anomalies in expression data, and we have identified disease-correlated disruption of predictable dynamic patterns by modeling a virtual time series in static data. Here we combine the two approaches, using an anomaly detection model and virtual time series to identify anomalous temporal processes in specific disease states. We demonstrate that this approach can informatively characterize individual patients, suggesting personalized therapeutic approaches. 2020 /pmc/articles/PMC7664835/ /pubmed/31797638 Text en http://creativecommons.org/licenses/by-nc/4.0/ Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
spellingShingle Article
Pietras, Christopher Michael
Power, Liam
Slonim, Donna K.
aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title_full aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title_fullStr aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title_full_unstemmed aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title_short aTEMPO: Pathway-Specific Temporal Anomalies for Precision Therapeutics
title_sort atempo: pathway-specific temporal anomalies for precision therapeutics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664835/
https://www.ncbi.nlm.nih.gov/pubmed/31797638
work_keys_str_mv AT pietraschristophermichael atempopathwayspecifictemporalanomaliesforprecisiontherapeutics
AT powerliam atempopathwayspecifictemporalanomaliesforprecisiontherapeutics
AT slonimdonnak atempopathwayspecifictemporalanomaliesforprecisiontherapeutics