Cargando…
Classification of Aggressive Movements Using Smartwatches
Recognizing aggressive movements is a challenging task in human activity recognition. Wearable smartwatch technology with machine learning may be a viable approach for human aggressive behavior classification. This research identified a viable classification model and feature selector (CM-FS) combin...
Autores principales: | Tchuente, Franck, Baddour, Natalie, Lemaire, Edward D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664911/ https://www.ncbi.nlm.nih.gov/pubmed/33182258 http://dx.doi.org/10.3390/s20216377 |
Ejemplares similares
-
Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests
por: Juneau, Pascale, et al.
Publicado: (2022) -
Sensor Validation and Diagnostic Potential of Smartwatches in Movement Disorders
por: Varghese, Julian, et al.
Publicado: (2021) -
Wearable smartwatch technology to monitor symptoms in advanced illness
por: Nwosu, Amara Callistus, et al.
Publicado: (2018) -
Automated step detection with 6-minute walk test smartphone sensors signals for fall risk classification in lower limb amputees
por: Juneau, Pascale, et al.
Publicado: (2022) -
Fall risk classification for people with lower extremity amputations using random forests and smartphone sensor features from a 6-minute walk test
por: Daines, Kyle J. F., et al.
Publicado: (2021)