Cargando…
A convolutional neural network segments yeast microscopy images with high accuracy
The identification of cell borders (‘segmentation’) in microscopy images constitutes a bottleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current segmentation methods face challenges when cells bud, crowd, or exhibit irregular features. We present a convolutiona...
Autores principales: | Dietler, Nicola, Minder, Matthias, Gligorovski, Vojislav, Economou, Augoustina Maria, Joly, Denis Alain Henri Lucien, Sadeghi, Ahmad, Chan, Chun Hei Michael, Koziński, Mateusz, Weigert, Martin, Bitbol, Anne-Florence, Rahi, Sahand Jamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665014/ https://www.ncbi.nlm.nih.gov/pubmed/33184262 http://dx.doi.org/10.1038/s41467-020-19557-4 |
Ejemplares similares
-
Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor
por: Gligorovski, Vojislav, et al.
Publicado: (2023) -
CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets
por: Bürgy, Léo, et al.
Publicado: (2023) -
Correlations from structure and phylogeny combine constructively in the inference of protein partners from sequences
por: Gerardos, Andonis, et al.
Publicado: (2022) -
Impact of phylogeny on structural contact inference from protein sequence data
por: Dietler, Nicola, et al.
Publicado: (2023) -
sto-3 is expressed in R4BL/R and R8BL/R, male-specific ray neurons in C. elegans
por: Susoy, Vladislav, et al.
Publicado: (2019)