Cargando…
Power-law scaling to assist with key challenges in artificial intelligence
Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to...
Autores principales: | Meir, Yuval, Sardi, Shira, Hodassman, Shiri, Kisos, Karin, Ben-Noam, Itamar, Goldental, Amir, Kanter, Ido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665018/ https://www.ncbi.nlm.nih.gov/pubmed/33184422 http://dx.doi.org/10.1038/s41598-020-76764-1 |
Ejemplares similares
-
Brain inspired neuronal silencing mechanism to enable reliable sequence identification
por: Hodassman, Shiri, et al.
Publicado: (2022) -
Publisher Correction: Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Biological learning curves outperform existing ones in artificial intelligence algorithms
por: Uzan, Herut, et al.
Publicado: (2019) -
Learning on tree architectures outperforms a convolutional feedforward network
por: Meir, Yuval, et al.
Publicado: (2023)