Cargando…
Collider bias undermines our understanding of COVID-19 disease risk and severity
Numerous observational studies have attempted to identify risk factors for infection with SARS-CoV-2 and COVID-19 disease outcomes. Studies have used datasets sampled from patients admitted to hospital, people tested for active infection, or people who volunteered to participate. Here, we highlight...
Autores principales: | Griffith, Gareth J., Morris, Tim T., Tudball, Matthew J., Herbert, Annie, Mancano, Giulia, Pike, Lindsey, Sharp, Gemma C., Sterne, Jonathan, Palmer, Tom M., Davey Smith, George, Tilling, Kate, Zuccolo, Luisa, Davies, Neil M., Hemani, Gibran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665028/ https://www.ncbi.nlm.nih.gov/pubmed/33184277 http://dx.doi.org/10.1038/s41467-020-19478-2 |
Ejemplares similares
-
Orienting the causal relationship between imprecisely measured traits using GWAS summary data
por: Hemani, Gibran, et al.
Publicado: (2017) -
Correction: Orienting the causal relationship between imprecisely measured traits using GWAS summary data
por: Hemani, Gibran, et al.
Publicado: (2017) -
Sample-constrained partial identification with application to selection bias
por: Tudball, Matthew J, et al.
Publicado: (2022) -
A robust method for collider bias correction in conditional genome-wide association studies
por: Mahmoud, Osama, et al.
Publicado: (2022) -
Evaluating and implementing block jackknife resampling Mendelian randomization to mitigate bias induced by overlapping samples
por: Fang, Si, et al.
Publicado: (2022)