Cargando…

Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC

We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Boseung, Busch, Sydney, Kazadi, Dieudonné, Ilunga, Benoit, Okitolonda, Emile, Dai, Yi, Lumpkin, Robert, Saucedo, Omar, KhudaBukhsh, Wasiur R., Tien, Joseph, Yotebieng, Marcel, Kenah, Eben, Rempala, Grzegorz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665115/
https://www.ncbi.nlm.nih.gov/pubmed/33192155
http://dx.doi.org/10.11145/j.biomath.2019.10.037
_version_ 1783609955519037440
author Choi, Boseung
Busch, Sydney
Kazadi, Dieudonné
Ilunga, Benoit
Okitolonda, Emile
Dai, Yi
Lumpkin, Robert
Saucedo, Omar
KhudaBukhsh, Wasiur R.
Tien, Joseph
Yotebieng, Marcel
Kenah, Eben
Rempala, Grzegorz A.
author_facet Choi, Boseung
Busch, Sydney
Kazadi, Dieudonné
Ilunga, Benoit
Okitolonda, Emile
Dai, Yi
Lumpkin, Robert
Saucedo, Omar
KhudaBukhsh, Wasiur R.
Tien, Joseph
Yotebieng, Marcel
Kenah, Eben
Rempala, Grzegorz A.
author_sort Choi, Boseung
collection PubMed
description We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations with no explicit transmission information. We compare these approaches using data from a 2012 outbreak of Ebola virus disease caused by Bundibugyo ebolavirus in city of Isiro, Democratic Republic of the Congo. The branching process model allows for a direct comparison of disease transmission across different environments, such as the general community or the Ebola treatment unit. However, the survival model appears to yield parameter estimates with more accuracy and better precision in some circumstances.
format Online
Article
Text
id pubmed-7665115
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-76651152020-11-13 Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC Choi, Boseung Busch, Sydney Kazadi, Dieudonné Ilunga, Benoit Okitolonda, Emile Dai, Yi Lumpkin, Robert Saucedo, Omar KhudaBukhsh, Wasiur R. Tien, Joseph Yotebieng, Marcel Kenah, Eben Rempala, Grzegorz A. Biomath (Sofia) Article We describe two approaches to modeling data from a small to moderate-sized epidemic outbreak. The first approach is based on a branching process approximation and direct analysis of the transmission network, whereas the second one is based on a survival model derived from the classical SIR equations with no explicit transmission information. We compare these approaches using data from a 2012 outbreak of Ebola virus disease caused by Bundibugyo ebolavirus in city of Isiro, Democratic Republic of the Congo. The branching process model allows for a direct comparison of disease transmission across different environments, such as the general community or the Ebola treatment unit. However, the survival model appears to yield parameter estimates with more accuracy and better precision in some circumstances. 2019-10-15 2019 /pmc/articles/PMC7665115/ /pubmed/33192155 http://dx.doi.org/10.11145/j.biomath.2019.10.037 Text en This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Article
Choi, Boseung
Busch, Sydney
Kazadi, Dieudonné
Ilunga, Benoit
Okitolonda, Emile
Dai, Yi
Lumpkin, Robert
Saucedo, Omar
KhudaBukhsh, Wasiur R.
Tien, Joseph
Yotebieng, Marcel
Kenah, Eben
Rempala, Grzegorz A.
Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_full Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_fullStr Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_full_unstemmed Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_short Modeling outbreak data: Analysis of a 2012 Ebola virus disease epidemic in DRC
title_sort modeling outbreak data: analysis of a 2012 ebola virus disease epidemic in drc
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665115/
https://www.ncbi.nlm.nih.gov/pubmed/33192155
http://dx.doi.org/10.11145/j.biomath.2019.10.037
work_keys_str_mv AT choiboseung modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT buschsydney modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT kazadidieudonne modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT ilungabenoit modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT okitolondaemile modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT daiyi modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT lumpkinrobert modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT saucedoomar modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT khudabukhshwasiurr modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT tienjoseph modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT yotebiengmarcel modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT kenaheben modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc
AT rempalagrzegorza modelingoutbreakdataanalysisofa2012ebolavirusdiseaseepidemicindrc