Cargando…
Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil
Microorganisms that display unique biotechnological characteristics are usually selected for industrial applications. Bacillus cereus NWUAB01 was isolated from a mining soil and its heavy metal resistance was determined on Luria–Bertani agar. The biosurfactant production was determined by screening...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665202/ https://www.ncbi.nlm.nih.gov/pubmed/33184305 http://dx.doi.org/10.1038/s41598-020-75170-x |
Sumario: | Microorganisms that display unique biotechnological characteristics are usually selected for industrial applications. Bacillus cereus NWUAB01 was isolated from a mining soil and its heavy metal resistance was determined on Luria–Bertani agar. The biosurfactant production was determined by screening methods such as drop collapse, emulsification and surface tension measurement. The biosurfactant produced was evaluated for metal removal (100 mg/L of each metal) from contaminated soil. The genome of the organism was sequenced using Illumina Miseq platform. Strain NWUAB01 tolerated 200 mg/L of Cd and Cr, and was also tolerant to 1000 mg/L of Pb. The biosurfactant was characterised as a lipopeptide with a metal-complexing property. The biosurfactant had a surface tension of 39.5 mN/m with metal removal efficiency of 69%, 54% and 43% for Pb, Cd and Cr respectively. The genome revealed genes responsible for metal transport/resistance and biosynthetic gene clusters involved in the synthesis of various secondary metabolites. Putative genes for transport/resistance to cadmium, chromium, copper, arsenic, lead and zinc were present in the genome. Genes responsible for biopolymer synthesis were also present in the genome. This study highlights biosurfactant production and heavy metal removal of strain NWUAB01 that can be harnessed for biotechnological applications. |
---|