Cargando…
Effect of Variable Selection Strategy on the Performance of Prognostic Models When Using Multiple Imputation
BACKGROUND: Variable selection is an important issue when developing prognostic models. Missing data occur frequently in clinical research. Multiple imputation is increasingly used to address the presence of missing data in clinical research. The effect of different variable selection strategies wit...
Autores principales: | Austin, Peter C., Lee, Douglas S., Ko, Dennis T., White, Ian R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665277/ https://www.ncbi.nlm.nih.gov/pubmed/31718298 http://dx.doi.org/10.1161/CIRCOUTCOMES.119.005927 |
Ejemplares similares
-
Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
por: Plumpton, Catrin O., et al.
Publicado: (2016) -
mbImpute: an accurate and robust imputation method for microbiome data
por: Jiang, Ruochen, et al.
Publicado: (2021) -
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
A pairwise strategy for imputing predictive features when combining multiple datasets
por: Wu, Yujie, et al.
Publicado: (2022) -
Variable selection under multiple imputation using the bootstrap in a prognostic study
por: Heymans, Martijn W, et al.
Publicado: (2007)