Cargando…

Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake

BACKGROUND: Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in natur...

Descripción completa

Detalles Bibliográficos
Autores principales: Hale, Matthew D., Parrott, Benjamin B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Environmental Health Perspectives 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665278/
https://www.ncbi.nlm.nih.gov/pubmed/33186072
http://dx.doi.org/10.1289/EHP6627
_version_ 1783609988845928448
author Hale, Matthew D.
Parrott, Benjamin B.
author_facet Hale, Matthew D.
Parrott, Benjamin B.
author_sort Hale, Matthew D.
collection PubMed
description BACKGROUND: Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES: We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS: Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol ([Formula: see text]) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and [Formula: see text]-treated animals, and between FSH-treated and nontreated animals. RESULTS: We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with [Formula: see text] overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION: Recapitulation of ovarian abnormalities by precocious [Formula: see text] revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627
format Online
Article
Text
id pubmed-7665278
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Environmental Health Perspectives
record_format MEDLINE/PubMed
spelling pubmed-76652782020-11-17 Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake Hale, Matthew D. Parrott, Benjamin B. Environ Health Perspect Research BACKGROUND: Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES: We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS: Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol ([Formula: see text]) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and [Formula: see text]-treated animals, and between FSH-treated and nontreated animals. RESULTS: We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with [Formula: see text] overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION: Recapitulation of ovarian abnormalities by precocious [Formula: see text] revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627 Environmental Health Perspectives 2020-11-13 /pmc/articles/PMC7665278/ /pubmed/33186072 http://dx.doi.org/10.1289/EHP6627 Text en https://ehp.niehs.nih.gov/about-ehp/license EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.
spellingShingle Research
Hale, Matthew D.
Parrott, Benjamin B.
Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title_full Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title_fullStr Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title_full_unstemmed Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title_short Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake
title_sort assessing the ability of developmentally precocious estrogen signaling to recapitulate ovarian transcriptomes and follicle dynamics in alligators from a contaminated lake
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665278/
https://www.ncbi.nlm.nih.gov/pubmed/33186072
http://dx.doi.org/10.1289/EHP6627
work_keys_str_mv AT halematthewd assessingtheabilityofdevelopmentallyprecociousestrogensignalingtorecapitulateovariantranscriptomesandfollicledynamicsinalligatorsfromacontaminatedlake
AT parrottbenjaminb assessingtheabilityofdevelopmentallyprecociousestrogensignalingtorecapitulateovariantranscriptomesandfollicledynamicsinalligatorsfromacontaminatedlake