Cargando…
Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network
Significance: Label-free quantitative phase imaging is a promising technique for the automatic detection of abnormal red blood cells (RBCs) in real time. Although deep-learning techniques can accurately detect abnormal RBCs from quantitative phase images efficiently, their applications in diagnostic...
Autores principales: | Lin, Yang-Hsien, Liao, Ken Y.-K., Sung, Kung-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665881/ https://www.ncbi.nlm.nih.gov/pubmed/33188571 http://dx.doi.org/10.1117/1.JBO.25.11.116502 |
Ejemplares similares
-
Characterization and identification of cell death dynamics by quantitative phase imaging
por: Hsieh, Huai-Ching, et al.
Publicado: (2022) -
Dynamic quantitative phase imaging for biological objects using a pixelated phase
mask
por: Creath, Katherine, et al.
Publicado: (2012) -
Small training dataset convolutional neural networks for application-specific super-resolution microscopy
por: Mannam, Varun, et al.
Publicado: (2023) -
Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis
por: Kang, Jeon Woong, et al.
Publicado: (2011) -
Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells
por: Xue, Liang, et al.
Publicado: (2011)