Cargando…
Evolution of linkage and genome expansion in protocells: The origin of chromosomes
Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relativ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665907/ https://www.ncbi.nlm.nih.gov/pubmed/33119583 http://dx.doi.org/10.1371/journal.pgen.1009155 |
_version_ | 1783610049422163968 |
---|---|
author | Szilágyi, András Kovács, Viktor Péter Szathmáry, Eörs Santos, Mauro |
author_facet | Szilágyi, András Kovács, Viktor Péter Szathmáry, Eörs Santos, Mauro |
author_sort | Szilágyi, András |
collection | PubMed |
description | Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes. |
format | Online Article Text |
id | pubmed-7665907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-76659072020-11-18 Evolution of linkage and genome expansion in protocells: The origin of chromosomes Szilágyi, András Kovács, Viktor Péter Szathmáry, Eörs Santos, Mauro PLoS Genet Research Article Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes. Public Library of Science 2020-10-29 /pmc/articles/PMC7665907/ /pubmed/33119583 http://dx.doi.org/10.1371/journal.pgen.1009155 Text en © 2020 Szilágyi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Szilágyi, András Kovács, Viktor Péter Szathmáry, Eörs Santos, Mauro Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title | Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title_full | Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title_fullStr | Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title_full_unstemmed | Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title_short | Evolution of linkage and genome expansion in protocells: The origin of chromosomes |
title_sort | evolution of linkage and genome expansion in protocells: the origin of chromosomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665907/ https://www.ncbi.nlm.nih.gov/pubmed/33119583 http://dx.doi.org/10.1371/journal.pgen.1009155 |
work_keys_str_mv | AT szilagyiandras evolutionoflinkageandgenomeexpansioninprotocellstheoriginofchromosomes AT kovacsviktorpeter evolutionoflinkageandgenomeexpansioninprotocellstheoriginofchromosomes AT szathmaryeors evolutionoflinkageandgenomeexpansioninprotocellstheoriginofchromosomes AT santosmauro evolutionoflinkageandgenomeexpansioninprotocellstheoriginofchromosomes |