Cargando…

Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics

The combination of Eucommia ulmoides and Tribulus terrestris (ET) has been widely utilized in clinical practice for thousands of years, but the mechanism underlying its efficacy has not been elucidated to date. This study attempted to investigate the role played by the intestinal microbiota and feca...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Ying-Zi, Yang, Xue-Song, Jiang, Yue-Hua, Shao, Lin-Lin, Jiang, Ling-Yu, Yang, Chuan-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665921/
https://www.ncbi.nlm.nih.gov/pubmed/33204695
http://dx.doi.org/10.1155/2020/4261485
_version_ 1783610052703158272
author Qi, Ying-Zi
Yang, Xue-Song
Jiang, Yue-Hua
Shao, Lin-Lin
Jiang, Ling-Yu
Yang, Chuan-Hua
author_facet Qi, Ying-Zi
Yang, Xue-Song
Jiang, Yue-Hua
Shao, Lin-Lin
Jiang, Ling-Yu
Yang, Chuan-Hua
author_sort Qi, Ying-Zi
collection PubMed
description The combination of Eucommia ulmoides and Tribulus terrestris (ET) has been widely utilized in clinical practice for thousands of years, but the mechanism underlying its efficacy has not been elucidated to date. This study attempted to investigate the role played by the intestinal microbiota and fecal metabolism in the response of elderly spontaneous hypertensive rats (SHRs) to ET administration as a treatment for hypertension. Fourteen male spontaneously hypertensive rats (SHRs, 18 months old) were randomly divided into an ET group and an SHR group, and 7 Wistar-Kyoto (WKY) rats of the same age were employed as the control group. The ET group was intragastrically administered 1.0 g/kg/d ET for 42 days, and SHRs and WKY rats were administered an equal amount of normal saline intragastrically. The intestinal microbiota and fecal metabolism were analyzed by 16S rRNA sequencing and the GC-MS (gas chromatography-mass spectrometry)/MS assay. ET treatment decreased blood pressure steadily, improved the colonic tissue morphology, and changed the structure and composition of the imbalanced microbiota in SHRs. Specifically, ET treatment increased the abundance of Eubacterium, which might be one of the target microbes for ET, and had a negative correlation with the levels of α-tocopherol, chenodeoxycholic acid, and deoxycholic acid according to the Spearman correlation analysis. The change in the intestinal microbiota affected the fecal metabolic pattern of SHRs. Eight potential biomarkers were determined to be primarily enriched in ABC transporters, phenylalanine metabolism, central carbon metabolism in cancer, purine metabolism, and protein digestion and absorption. The correlation analysis demonstrated that the abundance of Eubacterium and the decreased levels of α-tocopherol, chenodeoxycholic acid, and deoxycholic acid in the ET group were highly correlated. Our results suggest that ET has a good antihypertensive effect, which may be driven by the intestinal microbiota and their beneficial metabolites. The results of this study may help to elucidate the antihypertensive mechanism of ET.
format Online
Article
Text
id pubmed-7665921
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-76659212020-11-16 Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics Qi, Ying-Zi Yang, Xue-Song Jiang, Yue-Hua Shao, Lin-Lin Jiang, Ling-Yu Yang, Chuan-Hua Biomed Res Int Research Article The combination of Eucommia ulmoides and Tribulus terrestris (ET) has been widely utilized in clinical practice for thousands of years, but the mechanism underlying its efficacy has not been elucidated to date. This study attempted to investigate the role played by the intestinal microbiota and fecal metabolism in the response of elderly spontaneous hypertensive rats (SHRs) to ET administration as a treatment for hypertension. Fourteen male spontaneously hypertensive rats (SHRs, 18 months old) were randomly divided into an ET group and an SHR group, and 7 Wistar-Kyoto (WKY) rats of the same age were employed as the control group. The ET group was intragastrically administered 1.0 g/kg/d ET for 42 days, and SHRs and WKY rats were administered an equal amount of normal saline intragastrically. The intestinal microbiota and fecal metabolism were analyzed by 16S rRNA sequencing and the GC-MS (gas chromatography-mass spectrometry)/MS assay. ET treatment decreased blood pressure steadily, improved the colonic tissue morphology, and changed the structure and composition of the imbalanced microbiota in SHRs. Specifically, ET treatment increased the abundance of Eubacterium, which might be one of the target microbes for ET, and had a negative correlation with the levels of α-tocopherol, chenodeoxycholic acid, and deoxycholic acid according to the Spearman correlation analysis. The change in the intestinal microbiota affected the fecal metabolic pattern of SHRs. Eight potential biomarkers were determined to be primarily enriched in ABC transporters, phenylalanine metabolism, central carbon metabolism in cancer, purine metabolism, and protein digestion and absorption. The correlation analysis demonstrated that the abundance of Eubacterium and the decreased levels of α-tocopherol, chenodeoxycholic acid, and deoxycholic acid in the ET group were highly correlated. Our results suggest that ET has a good antihypertensive effect, which may be driven by the intestinal microbiota and their beneficial metabolites. The results of this study may help to elucidate the antihypertensive mechanism of ET. Hindawi 2020-11-05 /pmc/articles/PMC7665921/ /pubmed/33204695 http://dx.doi.org/10.1155/2020/4261485 Text en Copyright © 2020 Ying-Zi Qi et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Qi, Ying-Zi
Yang, Xue-Song
Jiang, Yue-Hua
Shao, Lin-Lin
Jiang, Ling-Yu
Yang, Chuan-Hua
Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title_full Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title_fullStr Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title_full_unstemmed Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title_short Study of the Mechanism Underlying the Antihypertensive Effects of Eucommia ulmoides and Tribulus terrestris Based on an Analysis of the Intestinal Microbiota and Metabonomics
title_sort study of the mechanism underlying the antihypertensive effects of eucommia ulmoides and tribulus terrestris based on an analysis of the intestinal microbiota and metabonomics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665921/
https://www.ncbi.nlm.nih.gov/pubmed/33204695
http://dx.doi.org/10.1155/2020/4261485
work_keys_str_mv AT qiyingzi studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics
AT yangxuesong studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics
AT jiangyuehua studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics
AT shaolinlin studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics
AT jianglingyu studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics
AT yangchuanhua studyofthemechanismunderlyingtheantihypertensiveeffectsofeucommiaulmoidesandtribulusterrestrisbasedonananalysisoftheintestinalmicrobiotaandmetabonomics