Cargando…
Machine-Learning Monitoring System for Predicting Mortality Among Patients With Noncancer End-Stage Liver Disease: Retrospective Study
BACKGROUND: Patients with end-stage liver disease (ESLD) have limited treatment options and have a deteriorated quality of life with an uncertain prognosis. Early identification of ESLD patients with a poor prognosis is valuable, especially for palliative care. However, it is difficult to predict ES...
Autores principales: | Lin, Yu-Jiun, Chen, Ray-Jade, Tang, Jui-Hsiang, Yu, Cheng-Sheng, Wu, Jenny L, Chen, Li-Chuan, Chang, Shy-Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665951/ https://www.ncbi.nlm.nih.gov/pubmed/33124991 http://dx.doi.org/10.2196/24305 |
Ejemplares similares
-
Identify the Characteristics of Metabolic Syndrome and Non-obese Phenotype: Data Visualization and a Machine Learning Approach
por: Yu, Cheng-Sheng, et al.
Publicado: (2021) -
Current assessment practices for noncancer end points.
por: Shoaf, C R
Publicado: (1991) -
Risk characterization framework for noncancer end points.
por: Pierson, T K, et al.
Publicado: (1991) -
Building on Success: Assessment Categories for Experimental Noncancer End Points
por: Weinhold, Bob
Publicado: (2009) -
A COVID-19 Pandemic Artificial Intelligence–Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study
por: Yu, Cheng-Sheng, et al.
Publicado: (2021)