Cargando…
Image-based phenotyping of disaggregated cells using deep learning
The ability to phenotype cells is fundamentally important in biological research and medicine. Current methods rely primarily on fluorescence labeling of specific markers. However, there are many situations where this approach is unavailable or undesirable. Machine learning has been used for image c...
Autores principales: | Berryman, Samuel, Matthews, Kerryn, Lee, Jeong Hyun, Duffy, Simon P., Ma, Hongshen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666170/ https://www.ncbi.nlm.nih.gov/pubmed/33188302 http://dx.doi.org/10.1038/s42003-020-01399-x |
Ejemplares similares
-
Data for assessing red blood cell deformability from microscopy images using deep learning
por: Lamoureux, Erik S., et al.
Publicado: (2023) -
Deformability based Cell Sorting using Microfluidic Ratchets Enabling Phenotypic Separation of Leukocytes Directly from Whole Blood
por: Guo, Quan, et al.
Publicado: (2017) -
See-N-Seq: RNA sequencing of target single cells identified by microscopy via micropatterning of hydrogel porosity
por: Lee, Jeong Hyun, et al.
Publicado: (2022) -
Degradation of red blood cell deformability during cold storage in blood bags
por: Islamzada, Emel, et al.
Publicado: (2021) -
Reduced deformability of parasitized red blood cells as a biomarker for anti-malarial drug efficacy
por: Deng, Xiaoyan, et al.
Publicado: (2015)