Cargando…
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
Impaired sleep for hospital patients is an all too common reality. Sleep disruptions due to unnecessary overnight vital sign monitoring are associated with delirium, cognitive impairment, weakened immunity, hypertension, increased stress, and mortality. It is also one of the most common complaints o...
Autores principales: | Tóth, Viktor, Meytlis, Marsha, Barnaby, Douglas P., Bock, Kevin R., Oppenheim, Michael I., Al-Abed, Yousef, McGinn, Thomas, Davidson, Karina W., Becker, Lance B., Hirsch, Jamie S., Zanos, Theodoros P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666176/ https://www.ncbi.nlm.nih.gov/pubmed/33299116 http://dx.doi.org/10.1038/s41746-020-00355-7 |
Ejemplares similares
-
An approach to predicting patient experience through machine learning and social network analysis
por: Bari, Vitej, et al.
Publicado: (2020) -
A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation
por: Bolourani, Siavash, et al.
Publicado: (2021) -
Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals
por: Coppa, Kevin, et al.
Publicado: (2023) -
Do not let sleeping dogmas lie!
por: Natarajan, Sundaram
Publicado: (2016) -
Libyan Health System and ehealth: a Vital Step or an Unnecessary Leap?
por: Khalil, Mounir M, et al.
Publicado: (2008)