Cargando…
Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receiving cancer treatments
BACKGROUND: Objectives were to build a machine learning algorithm to identify bloodstream infection (BSI) among pediatric patients with cancer and hematopoietic stem cell transplantation (HSCT) recipients, and to compare this approach with presence of neutropenia to identify BSI. METHODS: We include...
Autores principales: | Sung, Lillian, Corbin, Conor, Steinberg, Ethan, Vettese, Emily, Campigotto, Aaron, Lecce, Loreto, Tomlinson, George A., Shah, Nigam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666525/ https://www.ncbi.nlm.nih.gov/pubmed/33187484 http://dx.doi.org/10.1186/s12885-020-07618-2 |
Ejemplares similares
-
Reliability and validity of proxy-SSPedi and mini-SSPedi in pediatric patients 2-7 years receiving cancer treatments
por: Tomlinson, Deborah, et al.
Publicado: (2022) -
Estimating the efficacy of symptom-based screening for COVID-19
por: Callahan, Alison, et al.
Publicado: (2020) -
Development of mini-SSPedi for children 4–7 years of age receiving cancer treatments
por: Tomlinson, Deborah, et al.
Publicado: (2019) -
Development of the SPARK family member web pages to improve symptom management for pediatric patients receiving cancer treatments
por: Watling, Cody Z., et al.
Publicado: (2020) -
Clinical utility gains from incorporating comorbidity and geographic location information into risk estimation equations for atherosclerotic cardiovascular disease
por: Xu, Yizhe, et al.
Publicado: (2023)