Cargando…
Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology
BACKGROUND: Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a deci...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666770/ https://www.ncbi.nlm.nih.gov/pubmed/33189132 http://dx.doi.org/10.1186/s13195-020-00719-x |
_version_ | 1783610195996311552 |
---|---|
author | Gnoth, Kathrin Piechotta, Anke Kleinschmidt, Martin Konrath, Sandra Schenk, Mathias Taudte, Nadine Ramsbeck, Daniel Rieckmann, Vera Geissler, Stefanie Eichentopf, Rico Barendrecht, Susan Hartlage-Rübsamen, Maike Demuth, Hans-Ulrich Roßner, Steffen Cynis, Holger Rahfeld, Jens-Ulrich Schilling, Stephan |
author_facet | Gnoth, Kathrin Piechotta, Anke Kleinschmidt, Martin Konrath, Sandra Schenk, Mathias Taudte, Nadine Ramsbeck, Daniel Rieckmann, Vera Geissler, Stefanie Eichentopf, Rico Barendrecht, Susan Hartlage-Rübsamen, Maike Demuth, Hans-Ulrich Roßner, Steffen Cynis, Holger Rahfeld, Jens-Ulrich Schilling, Stephan |
author_sort | Gnoth, Kathrin |
collection | PubMed |
description | BACKGROUND: Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. METHODS: This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. RESULTS: Our advanced antibody K11 showed a K(D) in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. CONCLUSIONS: The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-020-00719-x. |
format | Online Article Text |
id | pubmed-7666770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76667702020-11-16 Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology Gnoth, Kathrin Piechotta, Anke Kleinschmidt, Martin Konrath, Sandra Schenk, Mathias Taudte, Nadine Ramsbeck, Daniel Rieckmann, Vera Geissler, Stefanie Eichentopf, Rico Barendrecht, Susan Hartlage-Rübsamen, Maike Demuth, Hans-Ulrich Roßner, Steffen Cynis, Holger Rahfeld, Jens-Ulrich Schilling, Stephan Alzheimers Res Ther Research BACKGROUND: Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. METHODS: This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. RESULTS: Our advanced antibody K11 showed a K(D) in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. CONCLUSIONS: The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-020-00719-x. BioMed Central 2020-11-14 /pmc/articles/PMC7666770/ /pubmed/33189132 http://dx.doi.org/10.1186/s13195-020-00719-x Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Gnoth, Kathrin Piechotta, Anke Kleinschmidt, Martin Konrath, Sandra Schenk, Mathias Taudte, Nadine Ramsbeck, Daniel Rieckmann, Vera Geissler, Stefanie Eichentopf, Rico Barendrecht, Susan Hartlage-Rübsamen, Maike Demuth, Hans-Ulrich Roßner, Steffen Cynis, Holger Rahfeld, Jens-Ulrich Schilling, Stephan Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title | Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title_full | Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title_fullStr | Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title_full_unstemmed | Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title_short | Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology |
title_sort | targeting isoaspartate-modified aβ rescues behavioral deficits in transgenic mice with alzheimer’s disease-like pathology |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666770/ https://www.ncbi.nlm.nih.gov/pubmed/33189132 http://dx.doi.org/10.1186/s13195-020-00719-x |
work_keys_str_mv | AT gnothkathrin targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT piechottaanke targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT kleinschmidtmartin targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT konrathsandra targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT schenkmathias targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT taudtenadine targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT ramsbeckdaniel targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT rieckmannvera targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT geisslerstefanie targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT eichentopfrico targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT barendrechtsusan targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT hartlagerubsamenmaike targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT demuthhansulrich targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT roßnersteffen targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT cynisholger targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT rahfeldjensulrich targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology AT schillingstephan targetingisoaspartatemodifiedabrescuesbehavioraldeficitsintransgenicmicewithalzheimersdiseaselikepathology |