Cargando…

Assessment of baroreceptor reflex sensitivity in young obese Saudi males at rest and in response to physiological challenges

Autonomic imbalance in overweight/obese persons could lead to an increased risk of cardiovascular complications including hypertension and arrhythmias. Baroreceptor reflex sensitivity is a sensitive indicator to detect an altered sympathovagal balance in overweight/obese individuals. This study inve...

Descripción completa

Detalles Bibliográficos
Autores principales: AlShahrani, Abdullah N., Al‐Asoom, Lubna I., Alsunni, Ahmed A., Elbahai, Nabil S., Yar, Talay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666776/
https://www.ncbi.nlm.nih.gov/pubmed/33190394
http://dx.doi.org/10.14814/phy2.14625
Descripción
Sumario:Autonomic imbalance in overweight/obese persons could lead to an increased risk of cardiovascular complications including hypertension and arrhythmias. Baroreceptor reflex sensitivity is a sensitive indicator to detect an altered sympathovagal balance in overweight/obese individuals. This study investigated the effects of overweight/obesity on baroreceptor sensitivity in young Saudi males at rest and in response to physiological challenges. SUBJECTS AND METHODS: In this cross‐sectional study, spontaneous baroreceptor sensitivity at rest and in response to deep breathing, isometric hand grip exercise and moderate intensity isotonic exercise were recorded in 20 normal weight and 20 overweight/obese subjects. Finger arterial blood pressure signal, recorded through Finometer, was used to calculate baroreceptor sensitivity through cross‐correlation method. The baroreceptor sensitivity data were log transformed before application of parametric tests. RESULTS: The spontaneous baroreceptor sensitivity was similar in both groups at baseline, but exhibited a significant increase during deep breathing only in normal weight (p < .001). Immediately after the isotonic exercise the baroreceptor sensitivity was significantly lower than baseline in both normal weight and overweight/obese and remained significantly lower in overweight/obese individuals compared to normal weight (p < .05) throughout the recovery period. There was a significant rise in baroreceptor sensitivity after isometric exercise in overweight/obese group only (p = .001). Pearson's correlation showed a significant negative correlation of baroreceptor sensitivity with body mass index during deep breathing (r = −.472, p = .004) and in post‐isotonic exercise recovery period (r = −.414, p = .013). CONCLUSION: A significantly reduced baroreceptor sensitivity response to deep breathing, reduced baroreceptor sensitivity recovery after isotonic exercise, and an exaggerated shoot up after isometric exercise in overweight/obese suggests an altered sympathovagal balance. Baroreceptor sensitivity measurements in response to physiological challenges, deep breathing, and isotonic exercise, may be more sensitive investigations for detection of early attenuation of cardiac autonomic function. This would enable timely intervention thereby delaying complications and improving the quality of life.