Cargando…

Insect Bacterial Symbiont-Mediated Vitellogenin Uptake into Oocytes To Support Egg Development

Many insect species, such as aphids, leafhoppers, planthoppers, and whiteflies harbor obligate bacterial symbionts that can be transovarially transmitted to offspring through the oocytes of female insects. Whether obligate bacterial symbionts can carry important molecules/resources to the embryos to...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Qianzhuo, Wu, Wei, Huang, Lingzhi, Yi, Ge, Jia, Dongsheng, Chen, Qian, Chen, Hongyan, Wei, Taiyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667026/
https://www.ncbi.nlm.nih.gov/pubmed/33172995
http://dx.doi.org/10.1128/mBio.01142-20
Descripción
Sumario:Many insect species, such as aphids, leafhoppers, planthoppers, and whiteflies harbor obligate bacterial symbionts that can be transovarially transmitted to offspring through the oocytes of female insects. Whether obligate bacterial symbionts can carry important molecules/resources to the embryos to support egg development is still unknown. Here, we show that the vitellogenin (Vg) precursor of rice leafhopper Nephotettix cincticeps is biosynthesized by the fat body, secreted into the hemolymph and subsequently cleaved into the 35- and 178-kDa subunits, whereas only the 178-kDa subunit is taken up by the leading end of oocytes in a receptor-dependent manner or moves into the posterior pole of the terminal oocyte in association with obligate bacterial symbiont “Candidatus Nasuia deltocephalinicola” (hereafter Nasuia) in a receptor-independent manner. Furthermore, the 178-kDa Vg subunit can directly interact with a surface channel molecule (porin) on the envelope of Nasuia, allowing Vg to enter bacterial cytoplasm. Thus, Vg can hitchhike the ancient oocyte entry path of Nasuia, the common obligate symbiont of leafhoppers. Knocking down a Nasuia growth-related protein expression or treatment with porin antibody strongly prevents the ability of Nasuia to carry Vgs into oocytes and impair insect egg development. Nasuia-carried Vgs provide at least 20% of the total Vgs in the developing eggs. We anticipate that the bacterial symbiont-mediated Vg uptake into oocytes to support efficient egg development may be a common pattern shared by many insects.