Cargando…
REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis
BACKGROUND: Current copy number variation (CNV) identification methods have rapidly become mature. However, the postdetection processes such as variant interpretation or reporting are inefficient. To overcome this situation, we developed REDBot as an automated software package for accurate and direc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667294/ https://www.ncbi.nlm.nih.gov/pubmed/32961042 http://dx.doi.org/10.1002/mgg3.1488 |
_version_ | 1783610280666726400 |
---|---|
author | Liu, Mengmeng Zhong, Yunshan Liu, Hongqian Liang, Desheng Liu, Erhong Zhang, Yu Tian, Feng Liang, Qiaowei Cram, David S. Wang, Hua Wu, Lingqian Yu, Fuli |
author_facet | Liu, Mengmeng Zhong, Yunshan Liu, Hongqian Liang, Desheng Liu, Erhong Zhang, Yu Tian, Feng Liang, Qiaowei Cram, David S. Wang, Hua Wu, Lingqian Yu, Fuli |
author_sort | Liu, Mengmeng |
collection | PubMed |
description | BACKGROUND: Current copy number variation (CNV) identification methods have rapidly become mature. However, the postdetection processes such as variant interpretation or reporting are inefficient. To overcome this situation, we developed REDBot as an automated software package for accurate and direct generation of clinical diagnostic reports for prenatal and products of conception (POC) samples. METHODS: We applied natural language process (NLP) methods for analyzing 30,235 in‐house historical clinical reports through active learning, and then, developed clinical knowledge bases, evidence‐based interpretation methods and reporting criteria to support the whole postdetection pipeline. RESULTS: Of the 30,235 reports, we obtained 37,175 CNV‐paragraph pairs. For these pairs, the active learning approaches achieved a 0.9466 average F1‐score in sentence classification. The overall accuracy for variant classification was 95.7%, 95.2%, and 100.0% in retrospective, prospective, and clinical utility experiments, respectively. CONCLUSION: By integrating NLP methods in CNVs postdetection pipeline, REDBot is a robust and rapid tool with clinical utility for prenatal and POC diagnosis. |
format | Online Article Text |
id | pubmed-7667294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76672942020-11-20 REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis Liu, Mengmeng Zhong, Yunshan Liu, Hongqian Liang, Desheng Liu, Erhong Zhang, Yu Tian, Feng Liang, Qiaowei Cram, David S. Wang, Hua Wu, Lingqian Yu, Fuli Mol Genet Genomic Med Method BACKGROUND: Current copy number variation (CNV) identification methods have rapidly become mature. However, the postdetection processes such as variant interpretation or reporting are inefficient. To overcome this situation, we developed REDBot as an automated software package for accurate and direct generation of clinical diagnostic reports for prenatal and products of conception (POC) samples. METHODS: We applied natural language process (NLP) methods for analyzing 30,235 in‐house historical clinical reports through active learning, and then, developed clinical knowledge bases, evidence‐based interpretation methods and reporting criteria to support the whole postdetection pipeline. RESULTS: Of the 30,235 reports, we obtained 37,175 CNV‐paragraph pairs. For these pairs, the active learning approaches achieved a 0.9466 average F1‐score in sentence classification. The overall accuracy for variant classification was 95.7%, 95.2%, and 100.0% in retrospective, prospective, and clinical utility experiments, respectively. CONCLUSION: By integrating NLP methods in CNVs postdetection pipeline, REDBot is a robust and rapid tool with clinical utility for prenatal and POC diagnosis. John Wiley and Sons Inc. 2020-09-22 /pmc/articles/PMC7667294/ /pubmed/32961042 http://dx.doi.org/10.1002/mgg3.1488 Text en © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Liu, Mengmeng Zhong, Yunshan Liu, Hongqian Liang, Desheng Liu, Erhong Zhang, Yu Tian, Feng Liang, Qiaowei Cram, David S. Wang, Hua Wu, Lingqian Yu, Fuli REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title | REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title_full | REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title_fullStr | REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title_full_unstemmed | REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title_short | REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
title_sort | redbot: natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667294/ https://www.ncbi.nlm.nih.gov/pubmed/32961042 http://dx.doi.org/10.1002/mgg3.1488 |
work_keys_str_mv | AT liumengmeng redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT zhongyunshan redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT liuhongqian redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT liangdesheng redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT liuerhong redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT zhangyu redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT tianfeng redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT liangqiaowei redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT cramdavids redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT wanghua redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT wulingqian redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis AT yufuli redbotnaturallanguageprocessmethodsforclinicalcopynumbervariationreportinginprenatalandproductsofconceptiondiagnosis |