Cargando…

Nano-micelle Curcumin; A Hazardous and/or Boosting Agent? Relation with Oocyte In-vitro Maturation and Pre-implantation Embryo Development in Rats

The present study was done to uncover the possible beneficial and/or detrimental effect(s) of nano-micelle curcumin (NMC) on oocyte in-vitro maturation and pre-implantation embryo development. Forty-eight mature female Wistar rats were assigned to control, 7.5, 15, and 30 mg/kg(-1) NMC-receiving (or...

Descripción completa

Detalles Bibliográficos
Autores principales: Roshanfekr Rad, Moona, Nejati, Vahid, Razi, Mazdak, Najafi, Gholamreza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667555/
https://www.ncbi.nlm.nih.gov/pubmed/33224229
http://dx.doi.org/10.22037/ijpr.2019.14799.12671
Descripción
Sumario:The present study was done to uncover the possible beneficial and/or detrimental effect(s) of nano-micelle curcumin (NMC) on oocyte in-vitro maturation and pre-implantation embryo development. Forty-eight mature female Wistar rats were assigned to control, 7.5, 15, and 30 mg/kg(-1) NMC-receiving (orally, for 48 days) groups. To assess the cumulus-oocyte complexes (COCs), the ovaries were stimulated by administrating (i.p.) a 25 IU of the pregnant mare’s serum gonadotropin (PMSG) hormone. Following 48-h, 15 IU of hCG was injected (i.p.), and the COCs were taken after 16-18-h. To analyze the pre-implantation embryo development ratio, the sperms were collected from clinically healthy male Wistar rats, and 3.0-3.6 × 106 per mL was added into the fertilization drop. The animals in 7.5 mg/kg(-1) NMC-receiving group exhibited a higher oocyte number versus control and other NMC-receiving groups. The NMC, in a dose-dependent manner, decreased the Zygote, 2-cell, blastocyst percentages, as well as hatched embryos, compared to the control group (P < 0.05). The 15 and 30 mg/kg(-1) NMC-receiving groups represented a remarkable enhancement in type I arrest. Meanwhile, a significant (P < 0.05) reduction was revealed in type III embryo arrest in the same groups. The NMC, at 7.5 mg/kg(-1) potentially enhances the oocyte number, while it fairly reduces the pre-implantation embryo development, even when it is administrated in dose levels of 7.5 mg/kg(-1) and/or higher. Although more studies are needed, the NMC could be considered as a suppressor of fertility potential, when consumed chronically even in low doses.