Cargando…
MyoSight—semi-automated image analysis of skeletal muscle cross sections
BACKGROUND: Manual analysis of cross-sectional area, fiber-type distribution, and total and centralized nuclei in skeletal muscle cross sections is tedious and time consuming, necessitating an accurate, automated method of analysis. While several excellent programs are available, our analyses of ske...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667765/ https://www.ncbi.nlm.nih.gov/pubmed/33198807 http://dx.doi.org/10.1186/s13395-020-00250-5 |
_version_ | 1783610378245111808 |
---|---|
author | Babcock, Lyle W. Hanna, Amy D. Agha, Nadia H. Hamilton, Susan L. |
author_facet | Babcock, Lyle W. Hanna, Amy D. Agha, Nadia H. Hamilton, Susan L. |
author_sort | Babcock, Lyle W. |
collection | PubMed |
description | BACKGROUND: Manual analysis of cross-sectional area, fiber-type distribution, and total and centralized nuclei in skeletal muscle cross sections is tedious and time consuming, necessitating an accurate, automated method of analysis. While several excellent programs are available, our analyses of skeletal muscle disease models suggest the need for additional features and flexibility to adequately describe disease pathology. We introduce a new semi-automated analysis program, MyoSight, which is designed to facilitate image analysis of skeletal muscle cross sections and provide additional flexibility in the analyses. RESULTS: We describe staining and imaging methods that generate high-quality images of immunofluorescent-labelled cross sections from mouse skeletal muscle. Using these methods, we can analyze up to 5 different fluorophores in a single image, allowing simultaneous analyses of perinuclei, central nuclei, fiber size, and fiber-type distribution. MyoSight displays high reproducibility among users, and the data generated are in close agreement with data obtained from manual analyses of cross-sectional area (CSA), fiber number, fiber-type distribution, and number and localization of myonuclei. Furthermore, MyoSight clearly delineates changes in these parameters in muscle sections from a mouse model of Duchenne muscular dystrophy (mdx). CONCLUSIONS: MyoSight is a new program based on an algorithm that can be optimized by the user to obtain highly accurate fiber size, fiber-type identification, and perinuclei and central nuclei per fiber measurements. MyoSight combines features available separately in other programs, is user friendly, and provides visual outputs that allow the user to confirm the accuracy of the analyses and correct any inaccuracies. We present MyoSight as a new program to facilitate the analyses of fiber type and CSA changes arising from injury, disease, exercise, and therapeutic interventions. |
format | Online Article Text |
id | pubmed-7667765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76677652020-11-17 MyoSight—semi-automated image analysis of skeletal muscle cross sections Babcock, Lyle W. Hanna, Amy D. Agha, Nadia H. Hamilton, Susan L. Skelet Muscle Research BACKGROUND: Manual analysis of cross-sectional area, fiber-type distribution, and total and centralized nuclei in skeletal muscle cross sections is tedious and time consuming, necessitating an accurate, automated method of analysis. While several excellent programs are available, our analyses of skeletal muscle disease models suggest the need for additional features and flexibility to adequately describe disease pathology. We introduce a new semi-automated analysis program, MyoSight, which is designed to facilitate image analysis of skeletal muscle cross sections and provide additional flexibility in the analyses. RESULTS: We describe staining and imaging methods that generate high-quality images of immunofluorescent-labelled cross sections from mouse skeletal muscle. Using these methods, we can analyze up to 5 different fluorophores in a single image, allowing simultaneous analyses of perinuclei, central nuclei, fiber size, and fiber-type distribution. MyoSight displays high reproducibility among users, and the data generated are in close agreement with data obtained from manual analyses of cross-sectional area (CSA), fiber number, fiber-type distribution, and number and localization of myonuclei. Furthermore, MyoSight clearly delineates changes in these parameters in muscle sections from a mouse model of Duchenne muscular dystrophy (mdx). CONCLUSIONS: MyoSight is a new program based on an algorithm that can be optimized by the user to obtain highly accurate fiber size, fiber-type identification, and perinuclei and central nuclei per fiber measurements. MyoSight combines features available separately in other programs, is user friendly, and provides visual outputs that allow the user to confirm the accuracy of the analyses and correct any inaccuracies. We present MyoSight as a new program to facilitate the analyses of fiber type and CSA changes arising from injury, disease, exercise, and therapeutic interventions. BioMed Central 2020-11-16 /pmc/articles/PMC7667765/ /pubmed/33198807 http://dx.doi.org/10.1186/s13395-020-00250-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Babcock, Lyle W. Hanna, Amy D. Agha, Nadia H. Hamilton, Susan L. MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title | MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title_full | MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title_fullStr | MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title_full_unstemmed | MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title_short | MyoSight—semi-automated image analysis of skeletal muscle cross sections |
title_sort | myosight—semi-automated image analysis of skeletal muscle cross sections |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667765/ https://www.ncbi.nlm.nih.gov/pubmed/33198807 http://dx.doi.org/10.1186/s13395-020-00250-5 |
work_keys_str_mv | AT babcocklylew myosightsemiautomatedimageanalysisofskeletalmusclecrosssections AT hannaamyd myosightsemiautomatedimageanalysisofskeletalmusclecrosssections AT aghanadiah myosightsemiautomatedimageanalysisofskeletalmusclecrosssections AT hamiltonsusanl myosightsemiautomatedimageanalysisofskeletalmusclecrosssections |