Cargando…
Survival prediction models since liver transplantation - comparisons between Cox models and machine learning techniques
BACKGROUND: Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learnin...
Autores principales: | Kantidakis, Georgios, Putter, Hein, Lancia, Carlo, Boer, Jacob de, Braat, Andries E., Fiocco, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667810/ https://www.ncbi.nlm.nih.gov/pubmed/33198650 http://dx.doi.org/10.1186/s12874-020-01153-1 |
Ejemplares similares
-
A Simulation Study to Compare the Predictive Performance of Survival Neural Networks with Cox Models for Clinical Trial Data
por: Kantidakis, Georgios, et al.
Publicado: (2021) -
Statistical models versus machine learning for competing risks: development and validation of prognostic models
por: Kantidakis, Georgios, et al.
Publicado: (2023) -
Predictive Capacity of Risk Models in Liver Transplantation
por: de Boer, Jacob D., et al.
Publicado: (2019) -
Neural Networks for Survival Prediction in Medicine Using Prognostic Factors: A Review and Critical Appraisal
por: Kantidakis, Georgios, et al.
Publicado: (2022) -
Investigating hospital heterogeneity with a competing risks frailty model
por: Rueten‐Budde, Anja J., et al.
Publicado: (2018)