Cargando…

Development of the automated software and device for determination of wicking in textiles using open-source tools

The development of automated software and the device for determination of wicking of textile materials, using open-source ImageJ libraries for image processing, and newly designed additional algorithm for the determination of threshold, is presented in this paper. The description of the device, desi...

Descripción completa

Detalles Bibliográficos
Autores principales: Milanovic, Predrag M., Stankovic, Snezana B., Novakovic, Milada, Grujic, Dragana, Kostic, Mirjana, Milanovic, Jovana Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668598/
https://www.ncbi.nlm.nih.gov/pubmed/33196645
http://dx.doi.org/10.1371/journal.pone.0241665
Descripción
Sumario:The development of automated software and the device for determination of wicking of textile materials, using open-source ImageJ libraries for image processing, and newly designed additional algorithm for the determination of threshold, is presented in this paper. The description of the device, design of the open-source software “Kapilarko”, as well as an explanation of the steps: image processing, threshold determination and reading of wicking height, are provided. We have also investigated the possibility of using the artificial neural networks for automatic recognition of the wicking height. The results showed that the recognition of the wet area of the sample, based on the application of artificial neural networks was in a very good agreement with the experimental data. The device's utility for the measurement of wicking ability of textile materials was proved by testing various knitted fabrics. The constructed device has the advantages of providing automated measurement and minimization of the subjective errors of the operators; extremely fast or long-term measurements; digital recording of results; consistency of experimental conditions; possibility of using water instead of colors and, last but not least, low cost of the device. Considering the importance and frequent measurements of wicking ability of textile materials, the advantages of the presented device, as well as the fact that commercial software without publishing the source-code, are used for most of the available devices, we believe that our idea to design the automated software and device by applying the "open-source" approach, will be of benefit to scientists and engineers in using or improving wicking experiments.