Cargando…

A comparison of DNA/RNA extraction protocols for high-throughput sequencing of microbial communities

One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaffer, Justin P., Marotz, Clarisse, Belda-Ferre, Pedro, Martino, Cameron, Wandro, Stephen, Estaki, Mehrbod, Salido, Rodolfo A., Carpenter, Carolina S., Zaramela, Livia S., Minich, Jeremiah J., Bryant, MacKenzie, Sanders, Karenina, Fraraccio, Serena, Ackermann, Gail, Humphrey, Gregory, Swafford, Austin D., Miller-Montgomery, Sandrine, Knight, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668742/
https://www.ncbi.nlm.nih.gov/pubmed/33200135
http://dx.doi.org/10.1101/2020.11.13.370387
Descripción
Sumario:One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol. We included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here we present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection, and well-to-well contamination, between these protocols. ACCESSION NUMBERS: Raw sequence data were deposited at the European Nucleotide Archive (accession#: ERP124610) and raw and processed data are available at Qiita (Study ID: 12201). All processing and analysis code is available on GitHub ( github.com/justinshaffer/Extraction_test_MagMAX ). METHODS SUMMARY: To allow for downstream applications involving RNA-based organisms such as SARS-CoV-2, we compared the two extraction protocols designed to extract DNA and RNA against our previously established protocol for extracting only DNA for microbial community analyses. Across 10 diverse sample types, one of the two protocols was equivalent or better than our established DNA-based protocol. Our conclusion is based on per-sample comparisons of DNA and RNA yield, the number of quality sequences generated, microbial community alpha- and beta-diversity and taxonomic composition, the limit of detection, and extent of well-to-well contamination.