Cargando…
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
ChemRxiv
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668744/ https://www.ncbi.nlm.nih.gov/pubmed/33200117 http://dx.doi.org/10.26434/chemrxiv.12725465 |
_version_ | 1783610522688552960 |
---|---|
author | Acharya, A. Agarwal, R. Baker, M. Baudry, J. Bhowmik, D. Boehm, S. Byler, K. G. Coates, L. Chen, S.Y. Cooper, C.J. Demerdash, O. Daidone, I. Eblen, J.D. Ellingson, S. Forli, S. Glaser, J. Gumbart, J. C. Gunnels, J. Hernandez, O. Irle, S. Larkin, J. Lawrence, T.J. LeGrand, S. Liu, S.-H. Mitchell, J.C. Park, G. Parks, J.M. Pavlova, A. Petridis, L. Poole, D. Pouchard, L. Ramanathan, A. Rogers, D. Santos-Martins, D. Scheinberg, A. Sedova, A. Shen, S. Smith, J.C. Smith, M.D. Soto, C. Tsaris, A. Thavappiragasam, M. Tillack, A.F. Vermaas, J.V. Vuong, V.Q. Yin, J. Yoo, S. Zahran, M. Zanetti-Polzi, L. |
author_facet | Acharya, A. Agarwal, R. Baker, M. Baudry, J. Bhowmik, D. Boehm, S. Byler, K. G. Coates, L. Chen, S.Y. Cooper, C.J. Demerdash, O. Daidone, I. Eblen, J.D. Ellingson, S. Forli, S. Glaser, J. Gumbart, J. C. Gunnels, J. Hernandez, O. Irle, S. Larkin, J. Lawrence, T.J. LeGrand, S. Liu, S.-H. Mitchell, J.C. Park, G. Parks, J.M. Pavlova, A. Petridis, L. Poole, D. Pouchard, L. Ramanathan, A. Rogers, D. Santos-Martins, D. Scheinberg, A. Sedova, A. Shen, S. Smith, J.C. Smith, M.D. Soto, C. Tsaris, A. Thavappiragasam, M. Tillack, A.F. Vermaas, J.V. Vuong, V.Q. Yin, J. Yoo, S. Zahran, M. Zanetti-Polzi, L. |
author_sort | Acharya, A. |
collection | PubMed |
description | We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 23 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively-parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS-CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses. |
format | Online Article Text |
id | pubmed-7668744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | ChemRxiv |
record_format | MEDLINE/PubMed |
spelling | pubmed-76687442020-11-17 Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 Acharya, A. Agarwal, R. Baker, M. Baudry, J. Bhowmik, D. Boehm, S. Byler, K. G. Coates, L. Chen, S.Y. Cooper, C.J. Demerdash, O. Daidone, I. Eblen, J.D. Ellingson, S. Forli, S. Glaser, J. Gumbart, J. C. Gunnels, J. Hernandez, O. Irle, S. Larkin, J. Lawrence, T.J. LeGrand, S. Liu, S.-H. Mitchell, J.C. Park, G. Parks, J.M. Pavlova, A. Petridis, L. Poole, D. Pouchard, L. Ramanathan, A. Rogers, D. Santos-Martins, D. Scheinberg, A. Sedova, A. Shen, S. Smith, J.C. Smith, M.D. Soto, C. Tsaris, A. Thavappiragasam, M. Tillack, A.F. Vermaas, J.V. Vuong, V.Q. Yin, J. Yoo, S. Zahran, M. Zanetti-Polzi, L. ChemRxiv Article We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 23 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively-parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS-CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses. ChemRxiv 2020-07-29 /pmc/articles/PMC7668744/ /pubmed/33200117 http://dx.doi.org/10.26434/chemrxiv.12725465 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Acharya, A. Agarwal, R. Baker, M. Baudry, J. Bhowmik, D. Boehm, S. Byler, K. G. Coates, L. Chen, S.Y. Cooper, C.J. Demerdash, O. Daidone, I. Eblen, J.D. Ellingson, S. Forli, S. Glaser, J. Gumbart, J. C. Gunnels, J. Hernandez, O. Irle, S. Larkin, J. Lawrence, T.J. LeGrand, S. Liu, S.-H. Mitchell, J.C. Park, G. Parks, J.M. Pavlova, A. Petridis, L. Poole, D. Pouchard, L. Ramanathan, A. Rogers, D. Santos-Martins, D. Scheinberg, A. Sedova, A. Shen, S. Smith, J.C. Smith, M.D. Soto, C. Tsaris, A. Thavappiragasam, M. Tillack, A.F. Vermaas, J.V. Vuong, V.Q. Yin, J. Yoo, S. Zahran, M. Zanetti-Polzi, L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title | Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title_full | Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title_fullStr | Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title_full_unstemmed | Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title_short | Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 |
title_sort | supercomputer-based ensemble docking drug discovery pipeline with application to covid-19 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668744/ https://www.ncbi.nlm.nih.gov/pubmed/33200117 http://dx.doi.org/10.26434/chemrxiv.12725465 |
work_keys_str_mv | AT acharyaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT agarwalr supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT bakerm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT baudryj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT bhowmikd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT boehms supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT bylerkg supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT coatesl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT chensy supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT coopercj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT demerdasho supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT daidonei supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT eblenjd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT ellingsons supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT forlis supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT glaserj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT gumbartjc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT gunnelsj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT hernandezo supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT irles supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT larkinj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT lawrencetj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT legrands supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT liush supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT mitchelljc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT parkg supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT parksjm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT pavlovaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT petridisl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT pooled supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT pouchardl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT ramanathana supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT rogersd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT santosmartinsd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT scheinberga supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT sedovaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT shens supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT smithjc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT smithmd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT sotoc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT tsarisa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT thavappiragasamm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT tillackaf supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT vermaasjv supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT vuongvq supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT yinj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT yoos supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT zahranm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 AT zanettipolzil supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19 |