Cargando…

Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19

We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Acharya, A., Agarwal, R., Baker, M., Baudry, J., Bhowmik, D., Boehm, S., Byler, K. G., Coates, L., Chen, S.Y., Cooper, C.J., Demerdash, O., Daidone, I., Eblen, J.D., Ellingson, S., Forli, S., Glaser, J., Gumbart, J. C., Gunnels, J., Hernandez, O., Irle, S., Larkin, J., Lawrence, T.J., LeGrand, S., Liu, S.-H., Mitchell, J.C., Park, G., Parks, J.M., Pavlova, A., Petridis, L., Poole, D., Pouchard, L., Ramanathan, A., Rogers, D., Santos-Martins, D., Scheinberg, A., Sedova, A., Shen, S., Smith, J.C., Smith, M.D., Soto, C., Tsaris, A., Thavappiragasam, M., Tillack, A.F., Vermaas, J.V., Vuong, V.Q., Yin, J., Yoo, S., Zahran, M., Zanetti-Polzi, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: ChemRxiv 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668744/
https://www.ncbi.nlm.nih.gov/pubmed/33200117
http://dx.doi.org/10.26434/chemrxiv.12725465
_version_ 1783610522688552960
author Acharya, A.
Agarwal, R.
Baker, M.
Baudry, J.
Bhowmik, D.
Boehm, S.
Byler, K. G.
Coates, L.
Chen, S.Y.
Cooper, C.J.
Demerdash, O.
Daidone, I.
Eblen, J.D.
Ellingson, S.
Forli, S.
Glaser, J.
Gumbart, J. C.
Gunnels, J.
Hernandez, O.
Irle, S.
Larkin, J.
Lawrence, T.J.
LeGrand, S.
Liu, S.-H.
Mitchell, J.C.
Park, G.
Parks, J.M.
Pavlova, A.
Petridis, L.
Poole, D.
Pouchard, L.
Ramanathan, A.
Rogers, D.
Santos-Martins, D.
Scheinberg, A.
Sedova, A.
Shen, S.
Smith, J.C.
Smith, M.D.
Soto, C.
Tsaris, A.
Thavappiragasam, M.
Tillack, A.F.
Vermaas, J.V.
Vuong, V.Q.
Yin, J.
Yoo, S.
Zahran, M.
Zanetti-Polzi, L.
author_facet Acharya, A.
Agarwal, R.
Baker, M.
Baudry, J.
Bhowmik, D.
Boehm, S.
Byler, K. G.
Coates, L.
Chen, S.Y.
Cooper, C.J.
Demerdash, O.
Daidone, I.
Eblen, J.D.
Ellingson, S.
Forli, S.
Glaser, J.
Gumbart, J. C.
Gunnels, J.
Hernandez, O.
Irle, S.
Larkin, J.
Lawrence, T.J.
LeGrand, S.
Liu, S.-H.
Mitchell, J.C.
Park, G.
Parks, J.M.
Pavlova, A.
Petridis, L.
Poole, D.
Pouchard, L.
Ramanathan, A.
Rogers, D.
Santos-Martins, D.
Scheinberg, A.
Sedova, A.
Shen, S.
Smith, J.C.
Smith, M.D.
Soto, C.
Tsaris, A.
Thavappiragasam, M.
Tillack, A.F.
Vermaas, J.V.
Vuong, V.Q.
Yin, J.
Yoo, S.
Zahran, M.
Zanetti-Polzi, L.
author_sort Acharya, A.
collection PubMed
description We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 23 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively-parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS-CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.
format Online
Article
Text
id pubmed-7668744
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher ChemRxiv
record_format MEDLINE/PubMed
spelling pubmed-76687442020-11-17 Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 Acharya, A. Agarwal, R. Baker, M. Baudry, J. Bhowmik, D. Boehm, S. Byler, K. G. Coates, L. Chen, S.Y. Cooper, C.J. Demerdash, O. Daidone, I. Eblen, J.D. Ellingson, S. Forli, S. Glaser, J. Gumbart, J. C. Gunnels, J. Hernandez, O. Irle, S. Larkin, J. Lawrence, T.J. LeGrand, S. Liu, S.-H. Mitchell, J.C. Park, G. Parks, J.M. Pavlova, A. Petridis, L. Poole, D. Pouchard, L. Ramanathan, A. Rogers, D. Santos-Martins, D. Scheinberg, A. Sedova, A. Shen, S. Smith, J.C. Smith, M.D. Soto, C. Tsaris, A. Thavappiragasam, M. Tillack, A.F. Vermaas, J.V. Vuong, V.Q. Yin, J. Yoo, S. Zahran, M. Zanetti-Polzi, L. ChemRxiv Article We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 23 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively-parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS-CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses. ChemRxiv 2020-07-29 /pmc/articles/PMC7668744/ /pubmed/33200117 http://dx.doi.org/10.26434/chemrxiv.12725465 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Acharya, A.
Agarwal, R.
Baker, M.
Baudry, J.
Bhowmik, D.
Boehm, S.
Byler, K. G.
Coates, L.
Chen, S.Y.
Cooper, C.J.
Demerdash, O.
Daidone, I.
Eblen, J.D.
Ellingson, S.
Forli, S.
Glaser, J.
Gumbart, J. C.
Gunnels, J.
Hernandez, O.
Irle, S.
Larkin, J.
Lawrence, T.J.
LeGrand, S.
Liu, S.-H.
Mitchell, J.C.
Park, G.
Parks, J.M.
Pavlova, A.
Petridis, L.
Poole, D.
Pouchard, L.
Ramanathan, A.
Rogers, D.
Santos-Martins, D.
Scheinberg, A.
Sedova, A.
Shen, S.
Smith, J.C.
Smith, M.D.
Soto, C.
Tsaris, A.
Thavappiragasam, M.
Tillack, A.F.
Vermaas, J.V.
Vuong, V.Q.
Yin, J.
Yoo, S.
Zahran, M.
Zanetti-Polzi, L.
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title_full Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title_fullStr Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title_full_unstemmed Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title_short Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19
title_sort supercomputer-based ensemble docking drug discovery pipeline with application to covid-19
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668744/
https://www.ncbi.nlm.nih.gov/pubmed/33200117
http://dx.doi.org/10.26434/chemrxiv.12725465
work_keys_str_mv AT acharyaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT agarwalr supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT bakerm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT baudryj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT bhowmikd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT boehms supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT bylerkg supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT coatesl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT chensy supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT coopercj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT demerdasho supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT daidonei supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT eblenjd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT ellingsons supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT forlis supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT glaserj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT gumbartjc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT gunnelsj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT hernandezo supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT irles supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT larkinj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT lawrencetj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT legrands supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT liush supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT mitchelljc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT parkg supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT parksjm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT pavlovaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT petridisl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT pooled supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT pouchardl supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT ramanathana supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT rogersd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT santosmartinsd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT scheinberga supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT sedovaa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT shens supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT smithjc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT smithmd supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT sotoc supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT tsarisa supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT thavappiragasamm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT tillackaf supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT vermaasjv supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT vuongvq supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT yinj supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT yoos supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT zahranm supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19
AT zanettipolzil supercomputerbasedensembledockingdrugdiscoverypipelinewithapplicationtocovid19