Cargando…
A Recurrence-Specific Gene-Based Prognosis Prediction Model for Lung Adenocarcinoma through Machine Learning Algorithm
BACKGROUND: After curative surgical resection, about 30-75% lung adenocarcinoma (LUAD) patients suffer from recurrence with dismal survival outcomes. Identification of patients with high risk of recurrence to impose intense therapy is urgently needed. MATERIALS AND METHODS: Gene expression data of L...
Autores principales: | Xu, Shaohua, Zhou, Jie, Liu, Kai, Chen, Zhoumiao, He, Zhengfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669350/ https://www.ncbi.nlm.nih.gov/pubmed/33224985 http://dx.doi.org/10.1155/2020/9124792 |
Ejemplares similares
-
The lymph node ratio predicts cancer-specific survival of node-positive non-small cell lung cancer patients: a population-based SEER analysis
por: Kai, Liu, et al.
Publicado: (2021) -
Overexpression of APC11 predicts worse survival in lung adenocarcinoma
por: Zhou, Jiayu, et al.
Publicado: (2018) -
CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1
por: Zhou, Jiayu, et al.
Publicado: (2019) -
A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies
por: Li, Yin, et al.
Publicado: (2019) -
Specific organ metastases and prognosis in lung adenocarcinoma
por: Zhao, Ziran, et al.
Publicado: (2023)